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THE RESPONSE OF AN AIRPLANE TO RANDOM ATMOSPHERIC DISTURBANCES ‘
By FRANKLINW. DrmmucH

SUMMARY

The datidsul approach to tlw gu.st-hxpiproblem which cun-
si.stsin cmsideri~~ight throughturbwlemtair to be a sta$ionury
random process i.s mt& by including tlw e$ect of l.deral
van”atwnoj the in.stantanti gust intendy on tlw aerodynamic
forces, %jorces obtainedin this manner are umd in dynamic
anulyses oj rigid andfihi.ble airplanes free to move verticuily,
in pitch, and in roll. The e~ect oj the interaction of longi-
tudirud, nornud, md lateral gwts on the wing strtx8es ix ai%o
considered.

The method oj analyzing the rigid-body moth ti timi.lur
to that wed jor anaJy8esoj the dynamic 8tabiLltyof airplana?,
in that the equations oj motion are mjerred to stability amx
cmd expre88ed in ternw oj wnventional stabi.li$yo?erivatwes.
The method oj anu.?y.zingthe dynamic efetz% of structure?

j?exibility conmkts in an @en&n .Pintegrdonof a numerics
approach to the static woelastic problem and h in a form
which o$em thi?po8mity of cdcu+$ing diwrgerweand$uiter
speeA with reldively little additional e~ort.

T/b man-square values, correlatwn functti, and power
spectra oj some of tb aerodynamicforc~ required in thti type
of analysis are cal.c@atedjor one special correlationfunction
oj the atmospheric turbulence. It h shown,for instance, that
if th? span ti re.hztiveJylarge compared with the integral 8ca+?e
oj turbulence, the mean-square lift and root bending mwnent
directly due to the gust are wbstatii.al.ly reduced when the
differences in instatianemw inten-sity of t?w turbulence along
the 8pan are taken into accmm.t. However, if the motions of
the airplaw are taken into account the mean-squareroot bend-
ing moment may be increased m a rew?.t of these dij%mn.ca.
Also, the mean-square pitching moment is 8hown to be 8u.b-
8tmUiul.lyinzrea-sedif the tad lengthti relativelyhrge compared
with the 8cale of turbulence. Finally, the wing stre3sesdu to
longitudinal, n4m7nul,and lateral guds are shown to be stati8-
timzllyindependtmtunder certain conddiorw.

INTRODUCTION

The local velocity fluctuations acting on an airplane flying
through ~tmospheric turbulence are functions of time defined
only in a statistical sense and, hence, constitute a stochastic
or random process. Consequently, the responm of the
airplane, whether they are motions (linear or angular dis-
placement, velocities, or accelerations), forces (lift, pitching
moment, bending moment, and so on), str=es, or any other

phenomena determined 6y the turbulence, can also be knowd
as functions of time in only a statistical sense.

This report is concerned with the statistical characteristics
of those responsw which have a bearing on the loads and
stresses experienced by the airplane; although other prob-
lems such as those relating to passenger comfort or to the
stability of the airplane as a gun platform can be treated in
the same reamer, they will not be considered here.

The first approaches to the gus~loadproblemwhich use the
statistical tec@iques developed for stationary random proc-
essesappear to be those of references 1, 2, and 3. (An earlier
invwtigation concerned with the motions of an airplane in
turbulent air is reported in ref. 4.) The fundamentals of
these approach= are discussed in some detail in reference 1,
and mention is made therein of investigations in other fields
of engineering and physics that have dealt with the problem
of deducing the statistkal characteristics of the output or
response of a dynamic system from those of its input. The
mean+ qusre normal acceleration of a rigid airplane free to
move in one degree of freedom, namely, vertical motion, is
calculated in reference 2. In addition to being rigid, the
airplane is implicitly sswmed to be small enough for all its
components to experienc8 the same gust velocity at any
instant of time. This means that the span of the airplane
must ‘be small compared with the integral scale of atmos-
pheric turbulence, which on the basis of the available
knowledge concerning the properties of the atmosphere
(ref. 4, for instance) appears to be in the order of several
hundred to 1,000 or 2,000 feet; that is, the span of the airplane
must be less than about 100 feet.

The purpose of the presentreport is to &tend this approach
to large flexible airplanes free to move in all directions. As
used herein, the terms “small” and “large” airplane refer
to airplanea which are very small and not very small, re-
spectively, compared with the integwd scale of turbulence;
thus, an airplane flying in a wide variety of atmospheric
conditions may be “small” under certain conditions and
“large” under others. Similarly, the terms “rigid” airplane
and Ybxible” airplane are used to designate airplanesflying,
respectively, at speeds fsr below those at @ich dynamic
and aeroelastic effects become important, and at speeds at
which these effects have to be taken into account; the same
airplane can thus be “rigid” under some conditions and
“flexible” under others.

j SUPWEZIWNAOA Tdmfml Note S91Oby Fmnklfn W. Dklerfcb, 1967. This report repwm~ except h mm mfnm ohmgq a tkh snbmftted h May M&f h fm.rthl fuf1311Ment
of the reqtdrmonts for tbo de.- of Dcctar of Pbflosephy at the California Instftute of Technology, P&ader% W
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Several fundamental assumptions are inherent in the
analysis contained in this report. In the fit place, all
atmospheric disturbanceaj motions, and structural deforma-
tions are assumed to be small enough to produce forces that
are linear and, hence, superposable. Also, the turbulent
‘(input” to the airplane is resumed to be stationary in a
statistical sense; that is, the turbulence in the plane of the
flight path is homogeneous. For the large airplane, the
additional assumption is made that the turbulence is axi-
symmetric with respect to vertical axes, a condition less
severe than complete isotropy. Th_e statistical character-
istiea of the turbulence are thus assumed to be invariant
under a translation of the space origin within the horizontal
plane rmd undar a rotation of the coordinates about the
vertical axis. l?inally, Taylor’s hypothesis to the effect
that time displacements are equivalent to longitudinal space
displacements is assumed to be valid.

The aerodymunic forces directly due to atmospheric
turbulence, which constitute the input forces for the dynamic
system represented by the airplane, are calculated in the
first part of this report for the large airplane, that is, for the
case where the sparnvke distribution of the intensity of
turbulence has to be taken into account. (The effect of
spanwise variation of gust intensity on the lift has been
trented by a slightly diflerent method in ref. 5.)

The d.ynami= of the rigid airplane are considered in the
second part. The dynamic system is now represented by a
set of three simuhneou9 ordinary differential equations,
rather than one as in reference 2; nonetheless, the problem
of calculating the required transfer functions is still one of
simple algebra.

The next part is concerned with the small flexible airplane
and thus has direct application to iighter-type airplanes and
guided mies.iiesoperating at relatively high speeds, in addi-
tion to swing as a preliminary to the last part of the report.
The dynamic system is no-ivrepresented by a partial differ-
ential equation, and the calculation of the transfer functions
requires the solution of ordinary differential equations.
Once these functions are calculated, however, the statistical
techniques are the same as before, as a result of the fact that
the lateral variation in gush intensi~ is ignored. Either
modal or numerical-integration approaches may be used to
analyze the dynamics of a swept-wing airplane with arbitrary
stiffness and mass distribution. Although modal approaches
have usually been preferred in the past for similar problems,
it was believed that, in view of the highly complex nature of
modern aircraft structures and the advanced type of c.om-
putiig machinery required and generally available for their
analysis, the numerical-integration approach would be
preferable and it has, therefore, been used.

The last part contains the analysis of the large flexible
airplane. The statistical problem is now that of a system
which is characterized by a partial differential equation
with time and a space coordinate as independent variables
and which is subjected to a random input that varies in time
and space, so that more is required than the transfer fnnc-
tions horn the gust intensi@- at one point on the wiug to
the stresses at another. The particular statistical problem

presented by this case is considered in some detail, and the
appropriate transfer functions are then obtained by using
the numerical-integration approach presented in the preced-
ing part to solve, in effect, the ordinary diilerential equations
which describe the wing deformations at any given fre-
quency.
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SYMBOLS
aspect ratio
span
Theodorsen function
lift CcmfIicient,L/qs
lifkcurve slope
rolling-moment coefficient, L’/qS3
coefficient of damping in roll, deiinecl as positive

for positive damping
damping-in-pitch derivative
static pitching derivative
chord, pdd to plane of symmetry
average chord, S/b
section lift coefficient at station y, l/qc
bending stifh=ss
distance &om section aerodynamic center to shenr

center, fraction of chord
distance from shear center to section center of

gravity, fraction of chord
distance from shear center to the midchord point,

fraction of chord
distance from shear center to the %-chord point,

fraction of chord
dimensionlesslifthfluence function (Green’s func-

tion for the spanwise lift distribution)
torsional stiilnes9
acceleration due to gravity
response to sinusoidal oscillation, J?ourier trrma-

form of h(t)
indiciaksponse function
mass moment of inertia about X-axis
mass moment of inertia about ~-axis
Bessel functions of the first kind, order O and 1
modified Bessel functions of the second kind, ordcw

Oand 1
integml of &
reduced frequency, uZ/2V
dimensionlessfrequency, uL”/U
lift

rolling moment
integral scale of turbulence
distributed lift per unit distance along the span
pitching moment
bending moment
twisting moment
mass (of airplane, unless designated otherwise by

subscripts)
distributed mass per unit distance along the span
distributed twisting moment (about axea perpen-

dicuk to the plane of symmetry) per unit
distance along the span

dynamic pressure
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radius of gyration about center of gravity; longi-
tudinal displacement corresponding to time
displacement 7

wing men
L*

scale parameter, =2
I

time
mean flying speed
longitudinal component of gust velocity
horizontal component of disturbed motion
lateral component of gust velocity
weight of airplane
vertical component of gust velocity
vertical component of distuxbed motion
coordinate along mean flight path
distance from intemection of elastic axis and root

chord to airplane center of gravity
tail length, distance from airplane center of

gravity to aerodynamic center of tail
modified tail length, distance from intemection

of elastic axis and root chord to aerodynamic
center of tail

coordinate perpendicular to plane of symmetry
coordinate id plane of symmetry perpendicular to

mermflight path; vertical deflection
inclination of chord to X-axis
span ratio, b/L*
rmtoconvolution function for ~(y)
dimensionlesslift distribution, UJZ?L
dimensionlesslift distribution in roll, Ccificzp
variable of integration corresponding to y
angle of pitch
angle of sweepback
mass density of the rLir
time displacement, argument of time-correlation

function
the power spectrum ~ in the case of axisymmetry
two-dimensional power spectrum (double Fourier

transform of ~)
Sears function (unsteady-lift function for gust

penetration)
one-dimensional or point power spectrum
two-dimensional power spectrum (single Fourier

transform of ~)
one-dimensional or point correlation function
two-dimensional correlation function ‘
frequency of oscillation

)Subscripts:
e,6 effective
.f fuselage
r wing root
t tail
u horizontal component of turbulence
w wing; vertical component of turbulence
hiatrix notation:
[1 square or rectangular matrix
11 diagonal matrix
:; row matrix

column matrix

Dots ovar symbols indicate derivatives with respect to
time.

AERODYNAMICFORCESRESULTINGDIRECTLYFROM
ATMOSPHERICTURBULENCE

The motions of a rigid airplane depend on the overall
forces and moments, whereas the stresses of a rigid airplane
and the motions and stressesof a flexible airplane depend on
the distribution of these forces, as well. This part of the
report is concerned with the calculation of the integrated
and distributed forces and moments directly due to atmos-
pheric turbulence when the spanwise variation of gust
intensity has to be taken into account. (The forces and
momenta caused by the motions which result from the forces
treated in this part can be calculated by conventional
methods and will not be considered here, although the com-
bined forces will be considered in the following parts.)
Thus, this part serves as a basis for all the material presented
in the later parts pertaining to the large airplane, and, hence,
the fundamental notions required for an analysis of the large
airplane are introduced here and discussed in some detail.

The basic approach is as follows: First, the instantaneous
value of the quantity of interest, such as the lift, is expressed
in terms of the instantaneous gust intensity at a point and a
suitable influence function. For the lift this influence func-
tion can and will be identified with a certain lift distribution
on the given wing in reverse flow; the same procedure may
and, in the case of the rolling moment, will be followed for
other integrated forces. On the other hand, for the local lift
the iniluence function is the Green’s function for the three-
dimensional unsteady-lift problem and cannot be identified
with an easily calculated lift distribution on the wing in
reverse flow. Inasmuch as no knowledge concernhqg this
function appears to be available, a method of calculating an
approximate Green’s function for this problem is outlined
herein. The required influence functions for, integrated
eilects can be synthesized from this function, and if the
associated lift distribution in reverse flow cannot be calculated
conveniently this approach may be preferable. This tech-
nique is illustrated here by means of the bending moment.

The next step consists in using the expression for the
instantaneous value of the given quantity to calculate a
correlation function for this quantity in terms of a correla-
tion function of the normal component of the atmospheric
turbulence. The power spectrum for the given quanti~
can then be obtained by taking the Fourier transform of
its correlation function. This power spectrum is considered
herein to be the desired end result, because the mean-
square values of the quantiw and its derivatives can be
obtained from it, and other statistical paramks of ~~rest
can be obtained from these mean+quare values. Several alter-
native approaches for calculating the aforementioned spec-
trum, either from the correlation function or directly from
the spectrum of atmospheric turbulence, are given in con-
nection with the lift and are directly applicable to other
quantitie9 a9 well.

In this part of the report the assumption is made that the
i.dluence functions of concern can be written as products
of a function of time alone and a function of distance along
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the span alone, and advantage is taken of this simplification
in calculating the desired spectra. This restriction is
removed in the last part of the report, where the influence
functions considered cannot be separated into spa~
dependent and time-dependent constituents, and so the
approaches outlined there are generalizations of those
presented in this part; they may also be used for Lhecalcnhw
tion of the spectra of the quantities considered in this part
if the assumption concerning the influence functions is
not valid.

DZFfNfTfONS OF 8TATD3TICAL PARA?dETEES

As pointed out in the introduction, the intensity of the
vertical component of turbulence w(t) is a random process,
so that the resulting forces can also be lmown only in a
statistical sense. The purpose ,of this part is to calculate
certain statistical properties of these forces, namely, their
mean-square values, their correlation functions, and their
power spectra. The fundamental principles involved in
statistical analyses of the type considered herein are ex-
pounded in some detail, and citations of the literature .on
the subject are given in references 1 and 2. These funda-
mentals will therefore not be repeated here. However,
both for the sake of ready refezence and inasmuch as the
statistical terms are not always deiined in the same manner,
the forms that are used herein are indicated in the succeeding
P-Phs.

The time average of a timedependent quantity is design-
ated by a bar placed over the Symbol,z and is detined as
follows :

The assumption will always be made that this I.&it exists
and is invariant under a translation of the origin of time.
This aamunption implies that the processes considered here
are stationary in a statistical sense.

The mean of a random process $(t) is defined as its time
average, and is always assumed to be zero. In dealing
with processes with nonzero mean this analysis is thus
pertinent only to the process which consists of the di&ence
between the original process and its mean value. Siarly,
the mean-square value of a random procaw ~(t) is deiined-
M the time average of the square of the process, so that

~= l’i#z
J
:Tfl(t)dt

The time-correlation function off(t) is defined as

so that

and the power spectrum of f(t)is defined as the Fourier

3Whenno @bllityofmnfm Ion exist& alkarls almns?dtode&nate aspacaareiage,
wlnthecsseof~end;. ~fwthe @3mp?nmtsof tmbnhmce the cm-relationfmiMcm3
domd plmarily cmepam dl@mmente and can he detlned by w amrages. Fm the
s die of wnthtemy, howewr, they era ccmldered to iM detlnedby ttme avera@.

transform of the correlation function:

J
p,(u) =: m e-f ‘r#,(T) dr

—.

‘+d:me-i%)d”

The second form is the more convenient one vi-hen#J repre-
sents more nearly a space correlation than a time correlation,
so that it depends directly on a space displacement r = Vr
rather than on a time displacement r. For the purposes of
the analysis praented herein, the gust or input correlation
functions have this property, so that, for instance, +. mmy
be defined as

of Fourier trans-
is n direct conse-

By virtue of the reciprocal properties
forms and the symmetry of #~~), which
quence of the a.wmmedstationarity of f(t),~ may bo ex-
pressed in terms of the spectrum of $ as

(1)

Ifj(t) is the input of a linear system, the power spectrum
of the response z(t) of thp system is related to the power
SpeCtZlllR of j(t)by

P.(@)=PWI%4) (2)

where ~(u) is the transfer function of the system, that is,
the complex amplitude of the response of the system to unit
sinusoidal input. Hence, H(o) is also the Fourier transform
of the indicisl response h(t) of the system, which is dofine(l
herein as the response of the swystemto a unit impulsive
input :

H(co)=
J

me-~%(t)dt (3)
—.

where the lower limit could be taken as zero, since h(t) is
zero for t<O. Conversely, h(t)can be obtained from lZ(u)
by means of the inverse of equation (3):

J~(t)=+ :m 1+’H(u) dco (311)

The mean+quare value of the response can then bo ob-
tained by integrating its speclrum. Similarly, the metm-
qquare values of the nth time derivative of the response can
be obtained from the (2n)th moment of the output spectrum.
For instance,

From the mean-squtue values of these derivatives other
statistical quantities of interest, such as the expected nuxnbm
of peaks of the response per unit time, can then be crdculatwl.



THD RESPONSE OF AN AIRPLANE TO

LIFT-INFLUENCE FUNCXIONS IN UNSTEADY FLOW

At any time the lift on n wing which results directly from
atmospheric disturbrmces can be expressed for an unswept
wing as

z(t)=~m dt, ~~, h(tl,I/)wW(t-tJ,Y) dy (4)
—m

whero h(t,y)dy is a lift-influence function which represents
the lift caused by an impulsive vertical gust of width dy
which at time t= O impinges on the wing at station y.

The influence functions required in equation (4) are difli-
cult to calculate directly; methods for obtaining lift distrib-
utions on wings of finite span in unsteady flow usually
require numerical solutions which do not lend themselves
readily to the analysis of angle-of-attack distributions repre-
sented by delta functions. However, by virtue of the reci-
procity theorems of linearized lifting-surface theory (ref. 6,
for instance) the lift intluence function for a twisted wing in
indicial motion is equal to the lift distribution on that wing
during indicial motion in the reverse direction with uniform
unit angle of attack. The lift distribution in indicial motion
with uniform angle of attack ean be calculated relatively
ensily.

For the few cases for which calculations have been made
(namely, some unswept wings), this lift distribution tends to
be substantially invariant in time, except for overall msgni-
tude. For instance, the calculations of reference 7 indicate
that the lift distribution of an oscillating rectangular or
elliptic wing in incompressible flow is substantially inde-
pendent of frequency, so that in indicial motion it is sub-
strmtially independent of time. This simplillcation may not
be valid for swept wings.

Tho lift influence function can then be written as

W)=: lk(t) ‘r(y) (5)

where y(y) defines the steady+tate lift distribution for
uniform unit angle of attack:

‘k’(y)=_#L

and where hL(t) describes the variation of the overall magni-
tude of the lift as a function of time after entry into a sharp-
edge gust and may be written as

In turn, k, is the lift response to a unit sharp-edge gust
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normalized to a steady-state value of unity and is, as in the
preceding equation, usually expressed in terms of semichord

lengths traveled ~. The time derivative is taken here be-

cause the response wanted is the one ta a unit impulsive
gust rather than a sharp-edge gust. .

The Fourier transform H~(0) of this function h.(t)is

proportional to a function +(k), -ivhiehmay be termed the
generalized Sears function because for two-dimensional in-
compressible flow it is the Sears function:

(6)

where

k=$

The function ~L(@) represents the comphm amplitude of the
lift due to sinusoidal gusts of unit amplitude and is thus the
transfer function from the gust to the lift.

Actually, only the absolute square of o(k) will be required.
For two-dimensional incompressible flow the following
approximation is given in reference 1:

(7)

This expression has the advantage of simplicity, although it
is somewhat in error compared with the absolute square of
the Sears function at very low frequencies, a fact which could
be remedied by using the approximation

l+ak

‘‘(k)‘2=l+uk(l+2~k).

where a is about 15 for a good overall fit to the exact expres-
sion. However, the behavior of the Sears function itself at
very high frequencies is unrealistic, because its absolute
square goes to zero as l/k, whereas for any nonzcro hlach
number and any finite span the absolute square of the gen-
eralized Seara function can be shown to tend to ZMOat lertst
as rapidly as l/?P. As a result of these discrepancies, the
approximation given by equation (7) and, for the samereason,
the absolute square of the exact Sears function, cannot be
used to obtain moments of the lift spectrum, that is, values
of the mean+ quare derivatives of the lift, although they nmy
be adequate for calculating the mean-square value of the
lift itself in many cases, particularly when absolute accuracy
is not required. Whenever possible the values of l~(?c)~
given in referenm 8 for the plan form and Nlach number of
interest should be used.

MEAN-SQUARE LET AND ITS SPECTRAL RESOLUTION FOR THS UNSWEPT WING

Basio equations,-The correlation function of the lift can be expressed, by virtue of equation (4), as

““”)=s:.s:.s:2s:2 “
h(tl,y~h(tz,yg) w(U(t-tJ,yW(U(t+7 -t,),y9) dyldy&dtz (8)

where the averaged product on the right side represents a veloci~ correlation function. This function depends in general
on both space and time displacements. However, if Taylor’s hypothesis is made, the time displacements are equivalent to
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longitudinal space displacements. The velocity correlation functions are then functions only of longitudinal and lateral
space displacements. Thus, for homogeneous turbulence,

w(z+ut,@@+g+u(t+T),y+7d=L(t+u7,71) (9)

In addition to Taylor’s hypothesis and the assumption of homogeneity, the turbulence is assumed to be axisymmetric
with respect to vertical axes, so that ~ti(g,~)is a function only of m. This function is the ordinary space-correlation
function $., so that

and, hence,

If the assumption implicit in equation (5) is now made,
the preceding equation can be written as _

SS
~~(T)= “ m h’(t,) &(&) f@@(T+t,-~)) dt, dt2 (10)

—. —m

where

SS
hem=; ~ :2 :;2WU’T’+ (?42-Y1)’)7W -f(y9) dyl dy’

where, in turn, l?(~) is an autoconvolution of y(y) defined by

(12)

The validity of equation (11) can be demonstrated by
performing the integration in the yl,y~ plane as indicated in
the followhig sketch:

That is, integration is performed fit over yl, with a variable
v=YeYl h~d m~tant. For this integration #mis constant,
so that only Y(YJ and ~(yl+~) are involved, and the rwult
is a function of q which is one-half of the function l?(q) de-
fied by equation (12). The second integration is then per-
formed over q, yielding equation (11) except for a factor of K.

In this process, only the part of the square above tho line
Yi=?/1 is covered- However, by a similar process, the par~
of the integral corresponding to the part of the plane below
this line can be evaluated and shown to be equal to the first
part, so that by detig r as in equation (12), both parts
are taken into account simultaneously in equation (11).

The quantity

‘W2=%.(o)

may be considered an averaged mean-square verticnl com-
ponent of turbulence; YW,(U7)is then the corresponding cor-
relation function, and the Fourier transform of the latter,

is the corresponding power spectrum.
Once P..(u) has been obtained, the power spectrum of tho

lift can be obtained by taking the Fourier transforms of both
tides of equation (10). The result is

$0’((0)=lHL(@) IZpwg(u) (14)

where H’(a) is the transfer function defined in the preceding
section. The mean square of the lift can then be obtained
by integrating its spectrum, m indicated in equation (1).

Equation (14) has the same form as the correaponcling
equation for the case where spanw-iseaveraging of the effects
of turbulence is not taken into account (see eq. (2) and ref,
1), except that pm(a) is now replaced by qv,(u). Thusj tho
specbxun of the averaged turbulence must approach that of
the unaveraged turbulence when the span approaches zero,
as may be seen to be the case from equation (11) and the
definitions of y(y) and I’(q).

Two alternative approaches.—The defin”ingrelations for
p~c(~), equatiom (11) and (13), do not necessarily mprescmt
the bmt method of calculating it in any given case. A slightly
ditlerent mprcssion appears to be more convenient in genmd.
It consists in substituting equation (11) into equation (13)
and inverting the order of integration to yield
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(16)

so that

A third approach, -whichhas certain advantages owx the othem, is similar to the one that has been used in reference 5.
In this approach the assumption of axiqmunetry is not made initially, and use is made of the spectrum

SS
;W(h,h)=$ ~’ ~me-i “~~~’);a(t!,d 4 h (17a’)

The correlation function ~ti6~7) can then be written as

Substitution of this expression into equation (13) and then
interchanging the order of integration yields:

where

and is, as a result of the symmetry of ~(y), real and sym-
metric in h.

Now, if the turbulence is axisymmetric, ~. depends only
on hm~m that is,

&(h,&)= %(JWFX7) (17b)

so that the expression for qmd(a)becomes

Although the spectra used in the last two approaches have
been defined by expressions involving the point correlation
function ~Jr), they can be expressed equally well in terms
of the point spectrum PJU), so that if, say, an experi-
mentally obtained point spectrum is to be used, it need not
ba transformed into a correlation function before it can be
used in these calculations. The required relations are

Id mu%v)=%(f4 ~
J

,~,%(w)
,& J@w%”l

(19)

and

“~”’=-?~’ ’20)

w-herethe notation r is used to specify that the finite part
of the integral is to be taken, an operation which may be
performed by integrating by parts and ignoring the infinite
part, so that, in terms of a proper integral,

Also, the function @JA) can be obtained from
means of either of the relations

Results of calculations.-In order to illustrate

;co(W,d by

the magni-
tude of the effects under consideration, calculations h&e
been made for a uniform loading -y(y)= 1 and a point correla-
tion function which has been used in references 1 and 2 and
appeam to fit experimental data (ref. 4) fairly well over a
large portion of the significant frequency range, namely,

+U(r)=w-we-’”””
so that

~L* l+3k’2
I ‘“(a)= fi (l+k”)’

where L* is the integral scale of turbulence, which is here
defied as

and where

This correlation function has the drawback that the mo-
ments of the spectrum associated with it are iniinite, so that
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it implies a process with Wte mean-square derivatives,
but it is quite useful if only the mean-square value of the
process itself is of intere9t.

For uniform loading,

()r (V)=2 l–~

and

and for the given correlation fiction,

.

where & and K1 are modified Bessel functions
kind, and

of the second

The mean~quare average gust intensity for this case is
given by

where /3= b/L*,and is shown in iigure 1 (a). The correlation
function $Weis given by

2
*.,(r) =-jj-

[(
U.K1u; Sinh-’9-”=(”;‘id-’!)+

$@-”-’=ql

where u=r/L*, and where %(u;8) and K1(u;O)are incomplete
modiiled Bessel functions of the second kind .defined by

The spectrum ~WC(0)is given by

2~wK,&~)–@(l+k’’)Ki(~~2)]}

where Z&(z) is the integral of K@):

The functions &6 and PD. (normalized with the averaged
mean-square turbulent velocity) are shown in figures 2 and
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(a) Unsweptwings.

(b) %vept wings, Lx :o~ ~=0.6,

FIGUREl.—Yhe mean-equare averaged vertiaal camponont of

turbulence.

3, respectively. The effect of the span ratio on the normnlizecl
correlation function of the averaged turbulence may bo aeon
to be relatively small, so that the effect on tho unnormalizocl
correlatio~ function is primarily the decrease in ovemll
level given by the ratio of ~ to ~. A similar strLtoment
may be made for the power spectrum. If the power spcc.Lrum
were not normalized the averaging effect of the spun would
tend to reduce the intensity of the spectrum at dl fre-
quencies, but the high frequencies would be atteuuwted
much more than the low ones, aa might be cxqmctcd, ln
fact, although the unaveraged spectrum decreases W. Q-2 at
high frequencies, the averaged spectrum decreases as Q-3,

The asymptotic values for b/L*~ ~ me shown in figures
z ~d 3 ~ order to ~dicate the natUe of tho f~ctiolla
xmsidared here when the sctile of turbulence is small com-
pared with the span, as may be the case for a wind-tunnel
model responding to natural or artificial tunnel turbulmco,
m for a bufleting wing or tail surface, although this condition
s not of practical concern for the gust-load problem.

The power spectrum of the lift is equal to the product of
the power spectrum ~~,(~) and the absolute square of tho
transfer function HJco), as indicated in equation (14).
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Intisrnuch as this lift is not an end in itself but only one
of the parameters that enter into the calculations of the
motion of the airplane, its mean~quare intensity is of little
practicnl signifknce; its spectrum is the quantity needed
in further calculations. However, if the mean-square
intensity is wanted for any resson it ean be obtained by
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i.rutegratingthe spectrum. Thus, for hstance, the approxi-
mate expression for l+(k) I*given by equation (7) and the
apwtrum wJa) used for the preceding calculation yields

-the mean-square lift:

&

()
1++’ 1

and, in: view of the observation that much of the turbulent
energy M contained in a region for which the span has a very
small effect on the (normalized) spectrum, this equation
should serve to furnish an approximation to the mean-
square lift for nonvanishing span, provided 7 is used
instead of ~. However, the mean~quare values of the
derivatives of the lift cannot be calculated in this simple
reamer, because the deviation of the normalized averaged
spectrum from the point spectrum at high frequencies cannot
be ignored in calculating the moments of the lift spectrum.

MEAN-SQUARE LIFT OF THE SWEPT WING

For the yawed or sideslipping unswept wing, equations
(10) and (14) for the lift-correlation function and spectrum
are still valid if an appropriate lift-i.nflueneefunction is used,
and if the correlation function for the averaged turbulence
is deiined by

where I’(T) now pertains to a lift-distribution function
Y(Y) which is appropriate for yawed motion and is defined for

—: em A&y&~ cos A. The mean-squsre averaged intensity

of the Yertical component of turbulence is then

where q’ = *A. Thus, this mean-square intensity is un-

&ected by the yawing process, except for the slight change
which results from the change in I’(q), although the spectral
resolution of the aver~~ed intensity changes in the process.

For the swept wing both y2–yl and Iyz]—Iyll occur in the integrrd, so that the reduction of the double integral for
i~,(~r) to a single integral (see eq. (11)) cannot be affected so simply. The double integral for the swept wing is

(21)
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From this integral, by using rectangular lift distributions
and the aforementioned point correlation function, the mean
square of the averaged turbulence aswell as the corr&ponding
correlation function and power spectrum have been calculated
by numerhxd integration for various sweep angles A, the

ratio -& being maintained at 0.5. (The .dectilon to hold

8— rather than /3constant was reached as a result of the
cos A
foregoing analysis of the yawed unswept wing, which indi-
cated that the effects of sweep should be minimized in this
mrmner.) The results for @ are shown in figure 1, and
the effect of sweep on @ is seen to be small for this com-
parison. The calculated correlation functions and spectra
(normalized with respect to ~ are not shown because they
agreed with those for A=O within less than 1 percent for
most values of Ur and k’, respectively.

MEAN-SQUARE ROLLING MOBIENT

In the preceding sections the averaging effect of the span
has been shown to consist, essentially, in reducing the
effective intensity of the turbulence sensed by the wing; thus,
it only modifies the forces present on a wing of small span.
If the analyaisis extended to the rolling moment, however, a
new”phenomenon appears. When a wing is so small relative
to the scale of turbulence that at any instant all of its points
experience thi same turbulent velocity, the wing experiences
no rolling moment as the result of the direct action of
turbulence (although it may experience a rolling moment
indirectly as a result of the rolling and yawing motion caused
by the lateral component of the turbulence). On the other
hand, on a large wing the @.ifferentintetiltiw of the turbu-
lence at difTerentpoints on the span give rise directly to a
net rolling moment, which then results ii rolling motion.
In this section the mean-quare value of this moment is
calculated.

At any. instant t the rolling moment L’(t)can be written
in the same form as the lift L(t)in equation (4); however,
according to the previously mentioned reciprocity theorem,
the lift-influence function h(t,y) is now the lift distribution
for an iudicial roll with unit helix angle at the wing tip. If
the assumption of invariance of this distribution with time
is made, as for the symmetric case (see eq. (5)), then the
required lift-influence function can be written as

I&y)=; h’(t)-y’(y)

C (t)@b
where h’(t)= 4 ~ , and where the steady-state lift

distribution -y’(y) E_~, now pertains to a unit linear anti-

symmetric angle of att-wk
The correlation function for the, moment can then be

written as

(23)

where, in turn, in analogy with equation (12),

J

(b/9)-q
,’(d=~ _W2 7’(1/)7’(1/+ddw

Hence, the second and third approaches indicated in tlm
section concerned with the mean-square lift (see eqs. (15)
and (16)) can be used to obtain

and

.

where

and

(24)

(26)

so that the mean-square rolling moment can be obtained by
integrating this spectrum.

A qualitative indication of the effect of span on the mmn-
squsre rolling moment sensedby an airplanemay be obtained
from the quantity #~/(0), which represents the integral of

the spectrum P..’. For a linear loading, y’=6/& and

“(’)=i-%k-%m

Hence, using the aforementioned expression
correlation function yields

for the point

—
18

$%6’(U)‘~~ /cy,(~+k,l)4 { [–32+26”+ (16/9’’+/3’4)Ko (J3’)+

(32&+ 6&3)K~(&)]+k’’[32 -6& ’-16XO@X)@’)-
(32&+2f?’3)lC,(/3’) +/9’31K&(&)]}

where
p’ ./3@p
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and

‘E-’+e-’c+’fl+w]+w]h.’(o)= p,

This spectrum and its integral approach zero linearly as B
tends to zero.

GENERALIZED AERODYNAMIC INFLUENCE FUNCTIONS m
UNSTEADY FLOW

The aerodynamic influence functions used in the preceding
sections define the contribution of a given station of a wing
to the total lift and rolling moment. In the analysis of a
flexible wing, and even in the calculation of certain properties
of n rigid wing, generalized aerodynamic influence functions
are required, which define the contribution of one station on
the wing to the lift at another station and thus represent a
Green’s function for the unsteady spanwise lift distribution.
No work appears to have been done on such functions. For
steady flow, apart horn some calculations for supersonic
speeds which are based on the subdivision of a given wing
into a number of squares, the only available results appear
to bo those given in references 9 and 10.

The analysis in this section is based on reference 8 and
consists in a generalization of the method presented therein
to unsteady flow. This method constitutes an attempt to
predict the lift distribution for any given twist on the basis
of knowledge concerning a fe~ deiinite angle-of-attack dis-
tributions, and may therefore be termed a function-interpo-
Imtion method. For the present purpose, the presumably
known lift distributions are the ones for uniform angle of
attack in direct and reve~e flow in a dimensionless form,
namely, cc,fiOL; they will be referred to as y~(y) and YB(Y),
respectively. (The function -y(y) used previously is the one
now designated by yiJy).) Also required is the coefficient
of damping in roll OZP. (The lifbcurve slope and the coeffi-

cient of damping in roll are the same in direct and reverse
flow by virtue of the reciprocity theorem, so that no distinc-
tion will be made.)

The approach of reference 9 then yields the following
approximate expression for the lift distribution due to any
angle-of-attack distribution:

~=r.a{z-r’.(y) + Aqa(y)-q -r.(y) } (26)

where

Values of K may be obtained horn the information given in
references 9 and 10. As the aspect ratio tends to zero, K
approaches ~, whereas for aspect ratios approaching in-
tinity, K tends to 1. The following relations can be obtained

horn elementary definitions and from the aforementioned
reciprocity theorem:

_cL= b~
b J

T’RQJa(y) dy
- W

With the aid of these relations the lift distributions given
by equation (26) may readily be seen to have the correct
lift and rolling moment for all angle-of-attack distributions,
and to reduce to the exact lift distributions for angle-of-
attack distributions which vary linearly along the span. A
lift distribution which possessesthese properties could readily
be obtained by approximating any given angle-of-attack
distribution by a suitably chosen linear one. However, this
procedure would yield poorer approximations than the ones
furnished by equation (26); for a parabolic angle-of-attack
distribution on a wing of very small aspect ratio, for instnnce,
this procedure would yield the lift distribution

with a bending moment too low by 17 percent compared
with the one of the exact lift distribution,

?=%’FGY[l+G)l
whereas equation (26) yields

%=WW[1+4(%)I
with a bending moment 8 percent too high. For very large
aspect ratios, y~ and -y~both tend to the chord distribution
c/Z, so that the lift distributions given by equation (26) tend
to the correct limiting value,,

(28)

Therefore the accuracy of the results furnished by equation
(26) may be expected to increase as the aspect ratio increases,
whereas the accuracy of the other approximation is inde-
pendent of aspect ratio.

“In this connection, it maybe mentioned that “strip theory”
consistsin using equation (28) for all aspect ratios and, hence,
is not very satisfactory for wings with medium and low aspect
ratios. For instance, for the case discussed in the preceding
paragraph, it furnishes a bending moment which is too low
by 25 percent for a delta wing, and too high by 25 to 100
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percent for tapered wings. (The two figures pertain to taper
mtios of % and 1, respectively.)

Substituting the value for Z from equation (27) into equrL-
tion (26) gives the following expression for cc@

M, ~= b~==J
b J

_M2{ [Ydd-KTAd+bK 6(Y-v)I ~dd }a(d dvc

The expression in braces in the integnmd is the desiied gen-
eralized aerodynamic influence function and will be d@-
nated by Q(y,q), so that

.

(3(y,q)=[Y.@-K ~R@)+b~ N/–d] ~dd (29)

and

U, CL. bn ~ti,q)~=—
c Jb -W,

In the limiting caaes of wings of
aspect ratio, 7D and 7R approach a

c4d h (30)

very low or very high
common value, say ~.

T&q for W&S of very lo~-aspect ratio,

@(y,tJ=: [Y(y)+b NY–d] Y(d (31a)

where 6 is the Dirac delta (unit-impulse) function, and for
wings of very high aspect ratio,

G(y,?l)=b d(y--q) ‘Y(?J (31b)

TBe correlation function for this lift can then be written m

which is the

FOR AERONAUTICS

Green’s function associated with strip theory.
Thus, on wings of very high aspect ratio all the lift pro(lucod
by the local angle of attack at a given station is carried in the
immediate vicinity of that station, whereas on wings of very
low aspect ratio much of the lift is carried elsewhere. This
tendency for a given station to affect a greatarportion of tho
wing as the span decreases is, of course, to be ex-poctecl.

The preceding analysis crm be applied to the oscillatory
case at a given reduced frequency k, as well M to the steady
case. If the assumption of invariance of normalized distri-
butions with time or frequency is made, as before, then
‘Y&/), 7R(d, and ~ are independent of frequency, so thnt
equ-ation (3o) can be written ‘m

where Q(y,q), defined m before, is independent
applying a Fourier transformation to both sides of

(32rL)

of k. By
this equn-

tion ‘the-following relation is then obtained for flight through
continuously varying turbulence (cf. eq. (4)), as modified by
the assumption stated in equation (5):

Jl(y,t)=; _m
J

mMtl)dtlj _b,,bm@/,~)@(t-tJ,ddq W)

where Z(y)-&)is the lift per unit span at station y and timo t,
and where the function hL(t)isthe one used previously.

where the function

U-J—COJ—m

representsan efFectivecorrelation function, which when trans-
formed into the equivalent power spectrum Ymc(o,y) can be
used to obtain the power spectrum for Z(y,t) and hence its
mean-square value. Thus

(?~c&eg ‘
43(V) (@)~ ~ w) l’%(w) (33b)

Before the calculation of qm,(a,y) is discussed, the function
h,(UT,Y) mfl be defied in a somewhat more general form
than in the preceding paragraph in order to anticipate future
needs, namely

If the resumption is now made that y.(y) md YJy) are the I

(334

same, as is the case for all unswept wings and for wings of
very low or very high aspect ratio, they can both be identif-
ied with the function ~(g) used previously, so that

tZj,T)=[O–K) @)+bK a(y-dl ‘Y(d (34)

and

4.. (~T,Y1,lh)= { (l–~)v..(~~)+~( l–m[iw.”w”tvl)+

*.,” (uT,dl+=#a(@T’+ (&y,)’)} ~w yw

-where #We(tT7) is the correlation function calculated pre-
viously for the averaged vertical component of turbulence,
and where
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Similarly, then,

%&Wl,vz) = { (1—m29..(@) +~(1—.K) [p.c”(@,y})+

P.,”(~,Y2)l+@?. (@,Ya–Y1)}7(Y1)h2) (35)

where pud~(a,y)is the Fourier transfon.nof #u,*(Ur,y), so that

J

1 bll
W.,”(%Y)‘– Y(~)?w(@,ly—nl)~Tb -N* (36)

md thus represents an averaged form of the spectrum ZM
introduced previously. (See eqs. (16) and (19).) For uni-
form spanwise loading and the point correlation function
used previously, this function is

Lm~ 1
pw6*(U,y)=— –TU p (1+~’s)w { 3~2[~~O(aJ+KiO(UJ —

alKO(aI)–wKo(aJ]+ [u?~l (aJ +a22~I (QJI1

where

;&y
@A=ydl+k”

and is shown in figure 4 for several values of &.

The more restricted form of qw,required in equation (33b),

can now be obtained from the more general form given in

1.5

.5

.2

p*wd(w,y) -1
~

mu

.05

.02

,0I

k.00s2

I I

I I I
I 2 5

equation (35) by setting yj=yl=y in the latter, to yield

MEAN-SQUkFtE BENDING AND PITCHING MOMENTS

When the variation of the gust intensity along the span is
taken into account, the mean~quare lift L= is not an ade-
quate indm of the stresses in the wing, nor can the stresses
be obtained from the mean-square lift distribution my).
Instead, the mean-square bending and twisting moments, as
well as the mean-square vertical shear, must be calculated
directly.

In a manner analogo& to that employed for the lift and
rolling moment, each of these quantities can be expressed in
terms of a certain irduence function which, by means of
the reciprocity theorem, can be related to a lift distribution
on the wing in reverse flow. For instance, for the root
bending moment the desired lift distribution is the one for
an angle of attack which is zero on one wing and proportional
toy on the other, as maybe seen from the fact that the bend-
ing moment can be expressed as”

MB=
J

‘B [J(Y)l.(J(Y)~Y
-W2

where

f(y) =0 (Y<o)

so that, according to the reciprocity theory for unswept
wings in steady or indicial flow,

M.=
s
‘n[UY)L(ti)a@fY-’n

Similarly, for the root shear the required lift distribution
corresponds to an angle of attack which is zero on one wing
and uniform on the other.

Such lift distributions can be calculated readily. For
instance, for subsonic flow and unswept wings they can be
obtained from those given in reference 10; the lift distribu-
tion for the root bending moment is one-half the sum of a
linear symmetric and linear antis~etric lift distribution,
and the lift distribution for the root shear is one-half the
sum of a lift distribution due to a uniform angle of attack
and a lift distribution due to deflection of a full-span aileron.

Howeverj in some cases such calculations may be time-
ccmsuming, and an alternative approach may be desirable.
One such approach consis~sin synthesizing the desired influ-
ence function from the generalized lkinfluence (Green’s)
function discussed in the preceding section. In order to
illustrate the use of this approach, it is adopted in this section.

( :)and at
The bending moment at any station y O~y ~
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any time t can be obt aincd from the lift distribution considered in the preceding section as

where the influence function for the bending moment is

so that, upon introducing the previously used function for G(y,q)

Z@/,q)=[(1—K).h@J) +KM2(Y,T)I’Y(7)

(38)

(NW)

(39b)

where

J
M,(y) =-; #‘%’–OY(Y’W

M*(;,7?)=FV(?l>v)

‘IMJ?J,7))=0 (7s?/)
rind,hence, for the root bending moment,

1
J

b~
Ml (o) =6 ~ y’y(g’)dy’

ilkM=T (~>o)

M2(0,71)=0 (60)

Hence, the correlation function for the root bending moment is ,

SS.

‘/2 ‘n
#MB(7) =f_:s_:hL(~l~L(~z~ ~ldt9; _W2 _w”{(l–KwOJ)+ml-KuM(o) !M2(0,??J +

M,(o,qJ]+wM2(o,qJMg(o,qq) }~(q,)~(qJ#w(JW(r+ tl–h)2+(qi–ql)9 dqldq2 (40)

The approach used in the preceding sections can now be used
to obtain the power spectmnn of the root bend@g moment
by evaluating the inner pair of integrals of equation (4o),
tdcing the Fourier transform of the remit with respect to
r, and multiplying the power spectrum “obtained in this

C.q 2mannerby
(9

-& lI#I(k)1’ or by using one of the alternative
..

approaches indica~ed for the lift.
The spectrum corresponding to the inner @r of integrals

is, for K= 1 rmduniform loading,

L~
‘“’” (u) ‘mfl(l+k”)’ {[ ()

(–64+2&’)+8LI”& ; +

(’2~’+~’3’~’6)1+~’’[@’g~’o(%)+(64-6~’2)-

() ( )1}
8/3’2Ko$ —(32&-~)lK{ $

The integral of this spectrum is

#m:(0)=~ [(–24+$)+e-~n(24+ 12P+3&)]

Examination of #aC,,(0) indicates that, although the mmn-
square bending moment tends to decrease as the spwn in-
creases, it decreases less rapidly than the mean-squaro lift,
with ‘the result that the effective lateral center of pressuro
moves outboard. Quantitatively, the distance, from the
plane of symmetry to the effective lateral center of pressure
can be defined as the square root of the ratio of’ the mean-
square root bending moment to the mean squrmi:of the lift
on one wing, that is, of the root shear. Although those mean
squares have not been cxdculated, the square root of tho
ratio of #.e,, (0) to the comesponding value for th~ root shear
increases by 1$.5 percent as B incremmsfrom O‘to infinity,
with much of the increase realized at fairly small values of 13,

For a swept wing the variation of the gust intensity along
the span results in a pitching moment which must be taken
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into account in calculations of the dynamic response of the
airplane to continuous turbulence. This pitching moment
can be obtained in substantially the same manner as the
bending moment. Thus, if ~ is the station of the mean aerod-
ynamic chord,

.ilI(t)=trm A
s _W,(% IvI)Z(Y,t)dy

=tan A
~i J

mh@dtl bnM3(q)w(u(t–t,), q)(lq (40
-. - W2

whero

so that, with the previously used approximation to the
Green’s function,

M (?))={ (1–K) m–ml(o)] +m?–1~1) }Y(d

TI1o correlation function, spectrum, and mean-square value
of the pitching moment can then be obtained in the manner
used in the preceding sections.

WING-TAIL CORRELATION EFPECT9

The tail strikes n given gust some time after the wing does;
as a result, a pitching moment ariseswhich does not &et in
steady or quasi+ teady motion, nor if the airplane”is very
small, because then the time lag is insignificant. This pitch-
ing moment can, for the purpose of the prwent paper, be
unalyzed either in terms of the correlation between the gusts
at the wing and those at the tail or, if a time-lag term is
included in the indicird-responsefunction of the tail, in terms
of the correlation between the wing and tail response func-
tions. The tit point of view serves to exhibit the effect
under consideration more clearly and is adopted fit; the
second is more convenient and is adopted in the subsequent
parts of this report.

In the somewhat artificial case of a small wing and tail
separated by a relatively large distance, only the distribution
of turbulence along a line (the flight path) rather than in a
portion of a plane is needed. The pitching moment due to
the verticnl component of atmospheric turbulence can then
be written as

J
M(t)= .mhm(tl)w(U(t-tl) )dl+

J
mh,(t,)w(z,+u(t– t,))dt,

—m —.

where xl is the tail length, and where hw(t) and hJt) are the
pitching-moment responses to indicial gusts hitting the
wing and tail, respectively, at t= O; both may include un-
steady-lift effects, and, if dowmvash efTectsare to be con-
sidered, hu(t) should include the contribution to the pitching
moment of the tail lift caused by the dowmvash at the tail
associated with the lift on the wing which results from the
iudicial gust.

The spectrum of this moment can then be written as

where the symbols R{} and * designate, respectively, the real
part and the complex conjugate of a complm number.
Obviously, when z, approaches O the second term in the
bracket in this equation vanishes, so that the fit term repre-
sent the perfeckcmmlation eflect, and the second represents
the correction for imperfect correlation.

In order to furnish an estimate of the magnitude of the
effects under consideration, some calculations have been
made on the basis of the assumption that a real coefficient ~
exists such that

H.(@) =@t(u)

which implies that the attenuation with frequency of the
contributions of the wing lift and tail lift, respectively, to
the pitching moment is the same. The ratio p is —1 for
neutral stability, and p> —1 for stable flight; it is positive
when the aerodynarnixenter location (tail off) is behind
the center of gravi~, so that positive values of p are not
likely to be incurred with normal configurations and flight
conditions.

For this case,

PM(u)= lHt(@)1’r(l+P)’–2P(l– as ~)l%(u)

and

L \ = /J

m
(m(fdkkme) (=./2)=(l+JL-2pv “ g-

where ,

The function v has been calculated for several values of its
argumente by means of the lif~attequation function given
in equation (7) and the point spectrum used in the pre-
ceding sections, and is shown in @e 5. &o shown is the
ratio of the mean-square moments as a function of the
factor y which in @e 5 is referred to as i14W/I&foThe effect.
of imperfect correlation is seen to be very large as the con-
dition of neutral stability is approached; the entire pitching
moment is then the result. of iustant.aneous differences in
gust intensities at the wing and tail.

In general, however, the tail length and the span are of the
same order of magnitude, so that an analysis of the effect of
imperfect correlation between the wing and tail must take
into account the averaging effect of the wing span. The
pitching moment at any instant is then

J
bJl

Wo =;f:’h.(twtl_JY) U(’u’(t-tl),y)dy+ ‘ ‘
....

J ~t(t,)~(~t+u(t-t,),o)dtl (42a)-.
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FmuaE 5.—Effectof tail length xi on the meanJsquare pitching

moment.

Hence, the power spectrum of this moment is

m~f(u)= IllW(@)I*P.C(@)+ ]Ht(u) I%u(o)+

{ }
2R e~fi H, (CO)HW*(0) qwc.(a,O) (42b)

where w..(~) is the averaged spectrum of equations (11)
~d (13), and P.,.(a,O) is the spectrum of equation (36) for

‘ ~=0. (It should be noted that h,(f) is the response to an
ind.icialresponse which stdm the tail at t=O; if it were the
indiciel response to a gust which strikes the wing at t=O,

the factor e ‘fi in the preceding equation would not be
required.)

DYNAMIC8OF THE RIGID AIRPLANE

In this part of the report the motions of a rigid airplane
subjected to atmospheric disturbances are considered. This
part thus applies directly to those airplanes which fly at
relatively low speeds and do no”t experience any significant
structural deformations, and also servw as a preliminary to
the treatment of the flexible airplane in the later park.

The assumption is made that the motions are small enough
to permit the use of linear approximations to the resulting

aerodmmmic

FOR AERONAUTICS

forces and to ~ermit the linear supcmposition
of tl&e forces. The lon&udinal degrees of freedom
(pitching, vertical, and horizontal motion) rmd tho lateml
degrees of freedom (-ywwjsidedip, and roll) can thereforo
be considered separately. The first two sections of this
part are concerned with the longitudinal motions of a small
airplane. The materiel presented here is thus n generdizn-
tion of the single-degree-of-freedom analysis presentwl in
reference 2. Mathematically, the dynamic system is nOJV
described by a set of simultaneous ordinary diflmntinl
equations rather than a single one, but the problem of calcu-
lating the pertinent transfer functions is still one of simplo
algebra. The extension of these results to the largo airphmo
is effected in the third section, using the techniques dovelopcd
in the first part of this report. The latarnl motions of n
large airplane are considered briefly in the fourth section,
and the combination of the stresses due to longitudimd
and lateral motion of a large airplane is discusaeclin 1.I1o
iifth section.

EQUA’IYONSOFLONQITUDmALMOTION

The equations of motion of an airplane can bo exprosmd
in several coordinate systems. The system which is gm-
er@y the most convenient one for analyses of airplano
stability and is generally referred to as stability ares, con-
“sists of body-centered axea which are normal and parallel
to the relative air velocity and rotate with the airphmo as it
pitches or yaws. (See ref. 11, for instance.) The aero-
dynamic forces related to this axis system can be mensumd
more readily in wind tunnels than those related to other
axis systams. In view of the very close relation of a stability
analysis to the problem considered here, these axes will bo
used in thispart of the paper, but in the analysisof the fle.xiblo
airplane in the subsequent parts of the report space-centered
axes will be used, because they are slightiy more convenient
for that purpose.

The airplane will be considered to be in stendy level flight
prior to disturbance. The motions studied will be the de-
viations from theirmean values; for instance, the angle o con-
sidered here will be the difference between the disturbed and
the initial value of the angle of pitch. Hence, the motions
and forces c.akulated by the method indicated here must bo
added to their mean values to obtain the total motions and
forces.

Inasmuch as, for the purpose of a statistical analysis, tho
dynamic characteristics of the airplane are represented most
conveniently by its transfer functions, attention will bo
coniined in this section to sinusoidal gusts and motions,

For this case the linearized equations of longitudinal
motion can be written as follows (see eqs. H-193 of ref. 11,
for instance):

[

L —Zw –z” —’iuu

{}

WV

–x. iu—xu 9 ‘up

—zkii;-Mu –MU –(.#-iaMc o

[z”‘“’{:}=+(k) x. x.

LM. M.

(43)
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Tho stability derivatives which appear in these equations
me ddined in table 1 in terms of conventional aerodymunic
coeilicients, and the numerical valua are given for the ex-
ample used in referenc8 11. (The value of the mean chord
is not given in ref. 11 but it is assumed herein to be 10 feet
on the basis of other infon.pation given in ref. 11.)

In analysea of the stability of a rigid airplane the quasi-
stendy approximation to unsteady-lift effects is usually made,
in which, in effect, the forces corresponding to a steady
ottitudej to constant disturbance velocities, and to constant
accelerations are considered. This approximation is justiiied
because the motions of concern are generally sufficiently
slow. For the same reason this approximation can also be
made in analyzing the response of an airplane to atmospheric
turbulence.

However, in this problem another type of unsteady-lift
effect occurs, namely, that related to the forces directly
attributable to the turbulence. This effect is here taken
into rwcount by multiplying the quasi-steady values of the
forces due to gusts on the right side of equation (43) by the
attenuation function ~(k). This procedure implies the
assumption that the airplane is small relative to the scale
of turbulence, inasmuch m no averaging effects have been
taken into account; these effects will be discussed presently.
Also, this attenuation function is strictly applicable only to
the normal forces

The unsteady effects on the drag are not lmown because
of the relatively complicated nature of the mechanism which
gives rise to drag. If, however, the assumption is made that
upon entry into a sharp-edge gust the drag rises linearly and
nttnins its steady-state value in the time required to travel

l’.iBLE 1.—DEFINITIONSAND NUMERICAL VALUES OF
STABILITY DERIVATIVES

.

DLW1V2UVE

z.

z.

x.

x.

al.

L..
Al;

ill.

iv.

Dalnltlrm

‘s (CLC+CD)——
7)1u

‘#:(cLM+ C.)

‘s CL– cD~Tu(

2qs(cDm+CD).—
1)1u

*C
I==U ‘“

– 1.430

– 0.0955

0.0016

–o. 0007

–O. 0235

–o. 0013

0

–1. 920

W, lb-------------------------------------- 30,500
u, fp------------------------------------- 660
z, fat --------------------------------------
Altitude, ft--------------------------------- 20,0;~

Z? chord lengths, the drag equivalent of l+(k)12is the function

~– COS2iVk
2N2p

which, for N equal to about 5 or- 6, agrees fairly well with
l~(k)~ ~ the region of main interyt (k>l).

The unsteady moment is also chflicultto predict because of
the paucity of knowledge concerning unsteady dowmvash
effects for wings of hits span. However, inasmuch as the
wing lift contributes part of the moment and, through the
mechanism of dowmvash, determines to a large extent the
moment contributed by the tail, the use of the lift attenua-
tion function for the moment appears reasonable for a first
approximation, and the use of the same function for the lift
drag, and moment facilitates the analysis. -

For a more refined analysis, the time lag between the
instants at which the gust hits the wing and the tail must be
taken into account, not only for large airplanes, but even for
small airplanes if phwoid motions are important. (See ref.
12.) Also, the lag in down-wash should be taken into
account for large airplanes and po-tibly also for small air-
planes in some casw. One way of achieving this result is
indicated in the next p,art of the present paper; another is
discussed in reference 12.

In equation (43) the unknown quantities w. and up are
the normal and axial compommts of the disturbance velocities
of the airplane relative to the free stream. Inasmuch as the
coordinate axes rotate during the motion, the time deriva-
tives of these quantities do not represent the actual airplane
accelerations, which are required in analyses of the loads
experienced by the airplane and the degree of passenger
discomfort. If the deviations from a mean flight path are
assumed to be small, the accelerations normal and parallel
to the chord or longitudinal axis of the airplane are sub-
stantially the same as the absolute vertical and horizontal
accelerations 2 and Z, which can be obtained from the
relations

~= —Wp+ TJ~

z=—+-g(l
The transfer functions for these quantities can then be ob-
tained by introducing thwe relations into equation (43).

In studies of the longitudinal stabili~ of airplanes, equa-
tion (43) is rarely solved in the form given here. It is
usually reduced to two equations with two unknowns,
either’u~ and 0 (t’he phugoid case) or WPand o (the shorh
period we), the shortiperiod case being usually the one of
primary interest. The part of the turbulent energy con-
tained in the frequency range near the phugoid frequency is
relatively small, so that the phugoid case has no significance
for the analysis of loads and accelerations resulting from
atmospheric turbulence. Hence, the shorkperiod case,
which ignores the phngoid oscillations, ftnmishes an ex-
cellent approximation to the loads and accelerations asso-
ciated with the longitudinal motions of an airplane in turbu-
lent air. However, another twodegree+f-freedom case,
the one involving Wpand Uv, is useful in certain studies of
the effects related to the interaction of horizontal and vertical
components of turbulence.
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Both of these twordegree cases can be reduced to the si.ngle-
degree-of-freedom case involving only z (or WJ. For a~-
planes which have a large moment of inertia in pitch this
simple case furnishes a good approximation. It has been
studied in reference 2, where substantially the same approxi-
mations to the unsteady-.~t ‘effects -weremade as are made
here, except that in reference 2 apparen~mass effects were
included. (These effects are not included in the stability
derivatives used in equation (43) because they are usually
small-less than 1 percent of the mass of the airplan~and
are different for each degree of freedom. However, if
desired, the apparent mass pertaining to a given degree of
freedom can easily be added to the airplane mass in calcu-
lating the stability derivatives.) Eowevex, this approxima-
tion is more nearly valid for calculating peak loads pursuant
to an entry into a sharp-edge gust than for calculating the
response due to random turbulence. Consequently, in the
following sections, attention will be confined to the short-
period rose, although the analysis is equally applicable to
the other case and easily e&ended to the case of three degrees
of ileedom.

SOL~ONORTHEEQUATIONSOFLONGITUDmALMOTION

Transfer functions.-ll the degree of freedom pertaining
to z (or .tir) is ignored, the solution of equation (43) can be
written ai

where the transfer function ~(w) is defined by

@(@) =@(k)
—A:w2+B:ico+C$
–W+BOL+ CO

(44)

(45)

wher~ in turn, the coe.ilicients are defined in terms of the
stab+ty derivatives (see table 1) by

Ao= 1 A;=-Zw’

l%= – (Zw+il!f.+uu)B:=Zm’(Uik?;+M,)

co=J4p.–iJM. G=–U(M.IZ.–MZ.’)

The transfy function ~(y) car+.be defined similarly in
te~ of the coe.tlicients

A;=Mw’+Zm’M;

B;=– (Mw’Zu–MZco’)

~=o

In these equationa a distinction has been made between the
values of Zmand Mmwhich occur on the right side of equation
(43) and are here designated by a prime mark, and those on
the left side of that equation. The primed derivatives
pertain to the lift and moment directly due to gusts, whereas
the unprimed derivatives pertain to the lift and moment due
to airplane motion; the reason for this distinction is discussed
in a later section. Furthermore, the coefhcients ~~, .@~,~,
A$, B;, and c; are the same as the coefficients A:, Bt, . . .

emept that Zw, Zm’, M., and M.’ are replaced by Zti, Zu’,
.Mu, and M=’.

With these transfer functions the mean-square values of
2 and P can be calculated horn the spectra of w and u by
using equation (1), provided that the simultaneous action
of w and u is taken into account. In order to analyze this
effect the vertical acceleration Ewill be considered, but tho
analysis will be applicable to 8 or any other characteristic of
the airplane which responds to w and u. Furthermore, the
transfer functions need not be those considered in equation
(44), but can be those calculated for the three-degree-of-
freedom system or for a flerible airplane.

Normal-acceleration speotrum and mean-square value,—
For the present purpose the indicial-response functions
h;(t) and I&(t), which are the Fourier transforms of the
transfer functions (see eq. (3a)), are more convenient. In
terms of these indicial-response functions,

J
- E(t,)w(u(t–tl)) dl+

J
mh;(tl) U(U(t-tl)) M‘qt)=

-. -m

Then, if w(t) and u(t) me stationary in a statistical sensoj the
correlation function for Z(t)can be written as

k(T)=fm Jm [h:(h) h:(t,) AJu(r+tl–h))+
-m -.

h;(t,) h;(t,) #.(u(T+t,-t,))+

h:(h) h:(h) #JU(7+t,–t2))+

h:(t,) h;(t2) #w.(u(–T+tl–t2))l WI df2

(46)

where #ti(UT) is a cross correlation of w and u deiined by

MUT)=W(Z+m)IL(Z+uo+7)j

iVow, if the turbulence is isotropic, the mutually perpen-
dicular velocity components u and w at points in the XT-
plane are statistically independent, and their cross correlation
is zero. Therefore, the two terms in equation (46) involving
#mu(U7)vanish, and the power spectrum of z k

w (~)= I=(@) l%J@)+ I@(@) 12%(@) (47)

so that, generally speaking, the power spectrum of a reaponso
which depends on both the horizontal and the vertical com-
ponent of turbulence.is simply the sum of the power spectra
of the two contributions, provided the turbulence is isotropic.
(This statement can be shown to be true even if the distribu-
tion of the gusts over the span is taken into account.)

For the shorkperiod two-degree-of-freedom cnse, then, the
contibution- due to w is

and the contribution due to u w be obtained from the same
tnpression, but with the subscript and superscript w replaced
by u. However, the ratio of the two contributions is in the
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order of 4&, where a is the trim angle of attack in radians,
measured from the zero-lift conditions. Consequently, ex-
cept at very high lift coefficients, such as those used in land-
ing, the contribution due to u is usually negligible compared
with the one due to w and is disregarded in subsequent
sections.

By means of the lift-attenuation function given in equa-
tion (7) and the point spectrum used in the first part of the
report, the integral for 2 has been evaluated (by using the
technique of partial fractions for the integrand) for the ~-
ample of reference 11. (The lift-attenuation function of
equation (7) has been used despiti its shortcomings in order
to facilitate the analytic integration of the spectra.) The
results are shown in figure 6, as are the results calculated
similarly for the three-degr~e+f-freedom case, the other
two-degree-of-freedom case (horizontal and vertical motion;
referred to in the &m-e as the zero-pitch approximation), I
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FIGURE6.—Effed of scale of turbulence on the mean-square

acceleration of the example airplane.

and the single-degree-of-freedom case (vertical motion). An emmination of this figure indicates that, at least for this air-
plane, inclusion of horizontal motions does not affect the mean-square normal-acceleration response to any si~cant
extent. These calculations pertain to a “small” airplane, and no distinction has been made between the primed and unprimed
values of Z@ and Mu. .-

The preceding treatment of the short-period case has the advantage of using readily available information concer&g
the characteristics of any given airplane. ,Foi the purpose of trend studies a dimensionless form ‘of the transfer func-
tions is preferable. The preceding equation for ~ can be written in dimensionless form (the contribution of horizontal
gusts again being neglected) as

. .

and, similarly,

where K is the mass parameter

v is the dimensionless damping coefficient

c log, 2
v“~ Tu

T,j is the time to damp to one-half amplitude, which is
given by

log. 2
Tti—= -&w+M.+UMti)

so that

( )1 m? Cmc+cm;
: 1–27~=-

Y C.a

and k. is the dimensionless frequency of the short-pel.iod
oscillations,

‘0‘w&

(43-L)

(4’%).

Thus, for this twodegree-of-freedom case the dimension-
less mean-square responses are functions of only two addi-
tional parameters, which are dimensionlessforms of the main
characteristic of the short-period case (the shor~period fre-
quency and the time to damp to one-half amplitude), beyond
those encountered in the single-degree-of-freedom case,
namely, the mass parameter K and the scale parameter

T*

Bending-moment speotrum and mean-square value.-For
a smell airplane the instantaneous bending moments at vari-
ous points on the span are proportional to the @tantaneous
normal acceleration. For instan~ the root bending moment
can be written as

(49rL)
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where L@ and m. are, respectively, the lift on and the mass
of the wing, and where ~ and ~ are the lateral distances to
the center of pressure of the Iift on one wing and the center
of gravity of the mass of one wing. However, L= is propor-
tional to the lift L on the entire airplane, which in turn is
proportional to the normal acceleration, so that

LW=~mi

and

(49b)

Hence, the spectrum and mean=quare value of L1. are pro-
portional to the spectrum and mean-square value of 2, re-
spectively, the constant of proportionality be@g the square
of the quantity in the brackets of equation (49b).

SPECIAL PROBLEMS RELATED TO THE LONGITUDINAL MOTION OF LARGE
AmPLANm

Single-degree-of-freedom case.—In the preceding sec-
tions the airplane has been assumed to be small in the sense
of this report, and neither the instant.saeouslateral variation
of the intensity of turbulence nor the diiTerence between
instantaneous intensities at the wing and the tail has been
taken inta account. In this section this r@fiction is
removed by introducing the aerodynamic forces calculated
in the first part of this report into the dynamic analysis of
the preceding sections. The arguments advanced in the
preceding section for ignoring horizontal gusts and horizontal
motions are equally valid for the large airplane; therefore
these guste and motions will not be considered here.

For. the single-degree-of-freedom case in-rolving only
vertical motion the “required modification for the normal
acceleration is very simple. For this case the transfer
function is

(50)

where Z.’, attenuated by ~(k), is tie stability derivative
for vertical gusts and, hence, represents the lift per unit
gust intensity. Therefore, if the result for the lift calculated
in the fit part of this report is used, the mean~quare
normal acceleration becomes

(The function pu.(u) is defined in the first part of this
report.) This expression differs from the result obtained
in reference 2 only in that p.(a) is here replaced by q=,(u).

However, even for the singledegree case the calculation
of the bending moment now becomes a considerably more
complicated problem, because the lateral centers of pressure
of the lifts due to the motion of the airplane -and directly
due to turbulence no longer coincide. Equation (49a) now
becomes

~ L. ~La@ i
M.=-— — —

2 L U ~–?;z+

J
1-
~ _ h~(t~ dt,

s.
:P7M(Y) W(u(t-tl), y) dy (61)

.

where CL=is the lift-curve slope for the entire nirpkum,
h~lt) is the response function used in equation (38), and
W(Y) iSthe function-fi~,q) used in equation (38), with y=O.
In the first two terms on the right aide of equation (61),
2 and z can be related to w by means of h; (the Fourier
transform of the function H; presented in eq. (50)) and tho
lift directly due to turbulence obtained in the first part of
this report, so that these two terms can be written in tho
form

and, hence, equation (51) beco”mea

“(t)=iJ:md’’J:P’hL(’’)7~’y)+
haf(t,)IYj)]w(u(t-h),v) ~Y (62)

The required influence function for the bending momont
is, thus,

‘%o,t)=; [~L(t)7Af(@+&dt)7@)1 (63)

Although the two teirns of this function are products of a
time-dependent and a spacedependent constituent, as in
equation (5), their sum cannot be split up in this manner.
Hence, the techniquca used in the first par~ of this paper
are not directly applicable. The general treatment of prob-
lems involving influence functions for which the assumption
of equation (5) is.not valid will be considered in the last
part of this paper. However, in ‘this section a special
technique will be used that applies to cases for which the
influence function can be expressed as a sum of several terms
(two in this case), each of which can be expressed as a
product of two functions, which depend, respectively, on
time alone and distance along the span alone. (See also
ref. 13.) This approach is more convenient than the general
approach of the last part of this report when the number of
terms is two or, possibly, three. (Although in this section
only two terms will be considered, the generalization to
three or more terms is straightforward.) When tho number
of terms is greater than three, the general approach becomes
more covenient.

If the value of It& given by equation (62) for t+r is
multiplied by @e value for t and the rmdt is averaged, and
if the Fourier transform of the resultant correlation function
is then taken, the following expression is obtoinod for the
spectrum of the bending moment:

where the symbols R{ } and * dwignate, respectively,
the real part and the complex conjugate of a complox num-
ber. In this equation H~(u) and ~*(@) are the Fourior
transforms of h~(t) and h~(t),qm,(u)isthe previously defined
averaged spectrum for the lift, and Pw,land pw,Oare averaged.
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spectra obtained in a similar reamer but with the value of
r given by equation (12) replaced by

where tho subscripts g and a refer to the symmetric and anti-
syro.nmtricparts of ~~, respectively.

The contribution of the antisymmetric part of ~~ to r~
and, hence, to the spectrum for the bending moment stems
basically from the rsymmetry of the instantaneous distribu-
tion of gust intensity over the span. This asymmetry gives
rise to rLrolling moment (which was considered in the tit
part of this report) and, hence, to rolling motions, which
contribute additional bending moments due to the aero-
dynamic and inertia loads associated with these motions.
If, for the purpose of calculating the bending moment due
to symmetric flight through turbulent air alone, these mo-
tions are disregmded, then the contribution of ~~ to rz
should be disregarded as well. The problem of combined
symmetric and antispnmetric motion will be considered
presently.

h pointed out in reference 13, the mean-square bending
moment calculated in this manner maybe smaller or greater
than the value calculated by ignoring spanwiae variations
in gust intensity. If the masa of the airplane is almost
entirely contained in the fuselage, the decrease in the lift
which results from tding these variations into account
causes a decrease in bending moment. However, if most
of the mass is in the wing, the net bending moments (aero-
dynamic less inertia) for a uniform spanwiee gust are very
small, and the effect of taking spanwise variations of gust
intensity into account is to increase the mean-square bending
momenta.

Two-degree-of-freedom case.—For the two-degree-of-
frcedom (short-period) case the analysis given for the normal
acceleration in the preceding section can be extended as
follows: & indicated in equation (44) the transfer function
for 2 is now

1 C#+ (uJ’-fti+hfuw+m’lw 7.7L(-Z.’)W) +H%)=[-% –&+ BOb+CO 1

[
1 U(–zw)

1~ –u*+Bo&+Co LMte’ ~(k) (56)

(The following analysis can be applied equally well to Bby
using ~(u) instead of ~(u).)

If the expressions inside the brackets of equation (56) are
designated, respectively, by Hl(co) and Hz(u), and their
Fourier transforms by h,(t) and hJt), then, as a result of the
definitions of Zw’ and Mm’,

2(t)=
J

m h,(t,) L(t–t,) U%+
J

‘m’&(t,)M(t–t,) G% (57)
-. -.

where L(t) and M(t) are the instantaneous lift and pitching
moment due to the vertical component of atmospheric

turbulence, which have been obtained in the first part of
this report. The calculation of ~(~) or of > thus requires
not only the spectra of L and M, the calculation of which
has been discussed, but also the cross spectrum of L and M,
which has to be calculated directly from equations (4)
and (42a). The result is

r

R{ H,(u) H,”(u) H(u) H,”(a) }pm~.(u,O)]

%*(43]+

(5s)

where the first two terms represent the contributions of the
spectra of L and ill, respectively (see eqs. (14) and (42b)),
and the third represents the contribution of the cross spec-
trum of L and JM. For the present purpose the functions
k!(m), Ho(a), and H,(a) can be espressed as

H((N)=m(-ZJ @(k)

H.(co]=m Ax=(–2.) d(k)

H,(u) =[l~W–m. Ax=(–Zw)] o(k)

where AX=is the distance from the aerodynamic center (tail
off) to the airplane center of gravi@: This definition of the
contributions of the wing and tail to the pitching moment is
based on the considerations that the direct contribution
of the wing can be estimated with good accuracy and the
total pitching moment is likely to be known from experi-
ments, so that the contribution of the tail (which includes
the effect of the wing lift on the dowmvash at the tail) can
be determined as the difference of the two. The functions
P.,(a) and Pti6m(u,0)have been defined in ths first part of
this report. In view of the fact that the function ~(k) con-
tained in some of the terms of equation (58) always appew
in terms multiplied by others which contain @*(k), only the
absolute square of this function is required, as before.

SPECIAL PROBLEMS REL.4~&:LH&LATBBAL MOTION OF LARGE

The equations of motion in the lateral degrees of freedom
(roll, yaw, sideslip) have the same form and can be solved
in the same way as the equations for the longitudinal motion.
(See pp. III-53 to III-67 of ref. 1-1.) Again it is convenient
to cast the problem in the form used in a stability analysk
in order to take advantage of the results of such an analysis.
For a small airplane it is necessary only to replace the terms
due to rudder deflection by corresponding terms involving
side gusts, namely,
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where #(k) is a suitable side-force attenuation function for
side gusts and the notation of reference 11 is used for the
other terms. The terms corresponding to aileron deflection
can be disregarded for the small airplane. In the lateral
degrees of freedom the small airplane thus reacts only to
side gusts. On the other hand, the large airplane also reacts
in the lateral degrees of freedom to vertical gusts through
tho rolling moment calculated in the fit part of the present
report. If this rolling moment is to be included, it replaces
the term L8* 64used in reference 11.

Instead of treating all three degrees of freedom simul-
taneously, in stability analyses two one-degree-of-freedom
cases are often considered, namely, the one of sideslip alone,
with rmgle of yaw equal and opposite to angle of sideslip
(the Dutch roll case), and the one of rolling alone.

The Dutch roll case may be used for gust-load purposes
in connection with yawing and sideslipping motion due to
lateral gusts, provided the phase of the motion is not im-
portant. (As may be noted from the preceding sections,
the phase of a trrmsferfunction is important only in terms”
involving cross spectra.) Also, the Dutch roll case may
prove useful in calculating the vertical-tail loads resulting
from fight through turbulent air, particularly if the human
or automatic pilot holds the wings substantially level by
mermsof the ailerons. However, in general it does not ap-
pear to be as satisfactory an approximation as the one-
and tvm-degre~f-freedom approximations for longitudinal
motion.

For rolling motions due to rolling moments, the single-
degree case of rolling alone appears to furnish a very good
approximation. Although the rolling motion causes yawing
nnd sideslipping motions, these motions do not appear to
reflect on the rolling motion. Thus, the rolling motion
which results from the rolling moment can probably be
cnlculated fairly nccumtsly without regard to the other
lateral degreesof freedom. I?urthermore,within the Msump-
tion of small motions, the stresses associated with these
other lateral degrees of freedom do not generally contribute
appreciably to those associated with the longitudimd degrees
of freedom in the parts of the structure for which the latter
are critical, such as the wing (although they may be critical
for other parts of the structure, such as the vertical tail).
Therefore these degrees of freedom (yaw and sideslip) will
be ignored in the treatment of the large flexible airplane in
the last part of this paper. However, if chordwise bending
effects (deformations parallel to the chord) are important,
as they may be in some cases at speeds close to the flutter
speed, these other lateral degrees of freedom may have to be
included in the analysis.

For the large airplane, which responds in the lateral
degrees of freedom both to vertical gusts and to side gusts,
the superposition of the resulting responses, such as stresses,
may be effected in the way indicated for the’ interaction of
horizontal and vertical gusts. II the turbulence is isotropic,
the vertical and lateral gusts are statistically independent
for points in the XY-plane, so that the spectrum of a given
response is equal to the sum of the spectmun of that part of
the given response which is due ta vertical gusts and the

spectrum of that part of the response which is due to loterol
gusts.

COMBINATION OF THR RBSDLTS OBTMNRD FROM ANALYSF!5 OF THE
LONGITUDINAL AND LATERAL DEG~ OF FREEDOM

The instantaneous wing stresses depend both on the
motions in the longitudinal degrees of freedom (prinmrily
vertioal motion and pitching) and on those in the laterol
degrees of freedom (primarily rolling). The purpose of this
section is to indicate how the stresses associated with
vertical motion and pitching can be combined with those
associated”with rolling due to vertical gusts, particularly in
the case of a large rigid airplane. (A small airplane, flexible
or rigid, does not roll as a result of the action of vertical
~nsts, and for the large flexible airplane it is more convenient
to consider rolling motion simultaneously with the other
motions, so that tho superposition is effected automatically
in the process of obtaining the required transfer functions.)
For all airplanes the effect of side gusts can then be taken
into account, if isotropy is assnnmd, by adding the stress
spectra directly.

In this section the instantaneous stress at a given port of
the wing will be assumed to be proportional to the instan-
taneous bending moment at that section of the wing, so thmt
consideration can be contined to this bending moment; also,
the airplane will be considered to be free to move in only
two degrees of freedom, namely, vertical motion and rolling.
The extension of the following arguments to stresses which
depend on the vertical shear and the torque as well, and the
inclusion of pitching as an additional degree of freedom, can
be effected readily and will not alter the conclusion renched
here.

When rolling motions of the airplane are taken into
account, the bending moment due to the aerodynamic forces
associated with rate of roll and to the inertia lotid nssociatecl
tith rolling acceleration can be expressed in terms of tlm
rolling moment by a superposition integral. In turn, the
rolling moment can be espressed in terms of n superposition
integral involving the instantaneous gust intensities along
the span, the influence function -r’(y) used in the first ~mt
of the report, and an associated response function haf(t),
Hence, equation (52) is modified by the inclusion of a third
term and beeomes

MB(O=J”dt1J:2k(t1)7M@)+hM(t1)7@)+-.
h~(tJ7’(y)]w@(t –tl),Y) 4/

If the spectrum for MB is now calculated in the manner
used previously, the following result is obtained:

PafB(~)= PL(u)1%.6,(4+ ladfJ) P(%a(a)+

where H&(co)is the Fourier transform of I&(t), and where
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~~c~f~) and P~c,(u) can be obtainecl from equation (1’2) with

the following values of r~ and r,, respectively:

J

2 (b/2)-q
ra(q)=- ~ _w2 ~’(?/)-f’(?J+d@

J

2 (bm.-q
r4(~)=T _W2 7’(?/)%raQ/+n) 4/

(l’ho function r,(q) is four times the function r’(q) con-
sidered previously in connection with the rolling moment.
This factor of four must bo taken into account in h&(t).)

TIIe spectrum q~r~may be considered to consist of two
pnrts: Tho fiat three terms listed in equation (59), but
excluding the contribution of TX= to pw., (see eq. (55)),

represent the contribution of the symmetric parts of
tho instmtaneous gust distributions or the contribution
associated with symmetric motion; the last two te~
and the contribution of y~a to q.c, represent the contribution

of the antisymmetric parts of the instantaneous gust distri-
butions or the contribution associated with rolling motion.
Therefore, the power spectrum of the stress due to gusts
and combined symmetric and rolling motion resulting from
the gusts is the sum of the two power spectra (that for the
gusts and symmetric motion alone and that for the gusts
and rolling motion alone), provided the direct contribution
of the gusts is split up into a symmetric and rmtisymmetric
part and each is taken into account only once, in comection
with the appropriate type of motion. The cross-correlation
tems between the symmetric and antisymmetric contri-
butions to the stress can be shown to involve integrals which
contain products of symmetric and antisymmetric influence
functions and, hence, vanish, so that the cross correlations
me zero; hence, the two parts of the combined spectrum are
startisticallyindependent and, therefore, diiectly additive.

DYNAMICS OF THE SMALL FLEXIBLE AIRPLANE

The purpose of this part of the report is to consider the
transfer functions relating the stresses at various points of a
small flexible airplane to the vertical gusts which cause them.
The longitudinal and lateral degrees of freedom are still sepa-
rublo, and only the longitudinal degrees will be considered;
the lateral degrees, which are involved in analysis of the re-
sponse to side gusts acting on the vertical tail, can be analyzecl
in the same way. Therefore, for this case only one-half of
tho wing need be considered as a rwdt of the symmetry (or
antisymmetry, in the case of the lateral degrees of freedom)
of the problem.

The method which is outlined in this part consists in an
extension of the numerical-integration method of aeroelaatic
analysis described in reference 14 to sinusoidal motions of the
airplane. This extension takes into account the facts that
tho aerodynamic forces now have out-of-phase as well as in-
phase parts and that vertical deflections must now be calcu-
lated separately because the structural deformations can no
longer be characterized by angle+f-attack chang~. Also,

the ‘(rigid-body” degrees of freedom (vertical and pitching
motion of the airplane as a whole and structural defomnations
of the tail) are now taken into account.

The result is a set of linear algebraic equations (which serve
as an approximation to the ordinary differential qquations
that characterize the proble&) for the airplane motions and
deformations in terms of the applied amodynamic forces di-
rectly due to gusts. The desired transfer functions can then
be obtained from solutions of these equations at various fre-
quencies, and the power spectra of the stresses are given by
the product of the absolute square of these transfer functions
and the point power spectrum of the vertical component of
turbulence. The same equations may be used to calculate
with little additional effort certain aeroelastic effects, such as
the static aeroelastic deformations and the flutter speed,
which are usually obtained in separate analyses.

LOADSAPPLIZDTOTEIEwlNG

The loads applied to the wing stem from three sources:
The aerodynamic loads directly due to the action of the.
gusts, the aerodynamic loads due to the motions of the air-
plane, and the inertia loads.

The lift and pitching moment (about the elastic axis) per
unit span on a two-dimensional airfoil undergoing sinusoidal
angle~f-attack changes and vertical motions
pressible flow are (see ref. 15)

{[ 1
la=2mgc C(k) (l+2e,ik)a–ik -$ +

(;-%k2)~#$}

ma=27rq?
{[ 1

(?(?c)e, (l+2e,ik)a–ik -$ –

[i’k-(++’$wla-% }

incom-

(60)

The termsmultiplied by C(k) are referred to as the circulatory
terms because they are calculated from the bound and shed
vorticity, and the others arereferred to as the potential terms.
The potential terms are in the nature of additional-apparent-
mass effects, and all those that involve F are usually treated
together with the inertia forces rather than with the aero-
dynamic forces. For compressible flow, however, the forces
are calculated in a difFerentmanner, and the division of tho
forces krto circulatory and potential parts then has littlo
meaning. Consequently, in order to facilitate the extension
of this analysis to compressible flow, thii d&.tinctionwill not
be made herein,

The aerodynamic forces me therefore written as.-

(61)
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so that for incompressible flow

d,(k)= (l+2e4ik)O(k) +$-e&.

d.(k) =–ikC(k) +:

~,(k) = (l+2e@)e,C(k)–~
‘k+(A+e’2)&

8@)=-ikelC(k)-$ H.

ADVTSORY COMMJTI’E E FOR AERONAUTICS

In order to calculate the lift at a given point of a wing of
finite span an appropriate Green’s function is required. An
appro.simationto this function based on a reciprocity theorem
of linearized liftingauface theory, is given in the first part
of this report; as used for the computations of that part, this
function implies the assumptions that the spanwise distri-
bution of the lift for oscillations of the wing as a whole is
substantially invariant with frequency and that this distri-
bution” is the same in direct as in reverse flow. TNeitherof
these assumptions is essential to the analysis but both, and
particularly the first, simplify it considerably. With these
assumptions, the desired lift distribution is then given by
expressions of the form of equations (32a) and (34). -

For the present purpose, however, a set of aerodynamic
influenco coefficients is required, rather than iniluence
functions. Such a set of ~efficients, blwd on the same
ideas, can be obtained readily by the techniques used in
references 9 and 10. The result may be expressed as follows:

{l}==CLaFg{I?’,(Mw]Ia]+@)[Qi{$} } (OfW

where the aerodpamic-inOuence-coe5cient matrix [Q] is
deilned by

[QI=O-KNY1{1}l~JITl+m’1

where, in turn, {1} is a unit column matrix, and [1] is a row of
integrating coefficients suitable for integrating a continuous
function for a range of its argument from O to 1. Thus,
for instance, if n equidistmt points on the semispan are
considered, and n is odd, then according to Simpson’s rule

~ery Iittle information is avaiIable concerning the span-
wiee distributions of the pitching moment on wings of tite
span in unsteady flow. By means of the reciprocity theorems

an appropriate. Green’s function could be estimated if tho
lift distribution for wings with pmabolic camber were knowII;
however, such lift distributions do not appem to have been
calculated for wings of finite span in unsteady flow, In fact,
relatively litfle is known about moment distributions won
in steady flow. However, the available information in-
dicates that the local center of pressure does not appear to
be very sensitive to the lift distribution. (See mf. 9, for
instanca) It will be assumed that this is also true in un-
steady flow at a given frequency, and that, furthermore,
these centers of pressure are given by two-dimensional
theory. WM this assumption the moment can be written
as

{ mT]a=cL=zq

{ { }}
@c)icl [(?I{a}+d(k)[c1 [q ~ (62b)

The lift and moment distribution due to the gust cm bo
calculated in a similar manner. In the following analysis,
the magnitude of the gust intensity is considered to ho
unity, and the longitudinal reference point is the intersection
of the elastic axis and the wing root, so that the instantaneous
gust intensity at any station y is

-fi~~ Az/2
W=e

With this iwction w,

where ~(k) is the Seara function, as before.

Finally, the inertia loads are

1*=—?iiz+7h?acG

(63)

(64)

(65)
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The loads applied to the wing can thus be written, in summaxy, as
I

,—.-———————. --—-—.-—.-.—-.--——————-—

2c~a@) lc1[Q]– ; c~aFa3(k)lcl [Q]+

L i A

LOADS APPLIED TO THE TAIL

““%(k)[Q]

-—— --—------
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{}
w (66)

-1

The loads applied to the tail are similar in nature to those applied to the wing, but the tail experiences additional loads as
mresult of the dowmvash produced by the lift on the wing. Again, little is known about the dowmvash in unsteady flow, and
even in steady flow the dovmwash cannot be predicted aceuratdy beeanse of boundary-layer effects on the fuselage and the
wing root. Consequently, even in steady-flow analyses experimental result.sare usually relied upon.

In the following analysis, the assumption is therefore made that experimental results are available for steady flow, in the
form of the dowmvash derivative belbu. In order to determine the attenuation of this value with frequency, the results of
the analysis of reference 16 will be used. These results indicate that the time variation of the tail lift due to the dowmvash
caused by the wing lift which results born a unit jump in the wing angle of attack can be approximateed by an immediate jump
in the tail lift of -0.16 of the steady-state value and another jump to the steady#ate value after the time required to travel
the distance from the 45-pereent-chord point of the wing to the quarter-chord point of the tail plus another eighth of the
chord length. Hence, for sinusoidal angle-of-attack changes the tail lift due to do-wmvaahis

[
(%)%,=-~~a$~~ ~ ‘0.16 +1.16e

–ti~fi; ‘1[ 1(l+2e,@a,-ik -$ (67)

where xl’ is the distance from the intersection of the elastic!axis and the wing root (assumed for this purpose to be at the 45
percent point on the root chord) to the aerod~amic center of the tail. As pointed out in reference 16, this approximation is
valid only for k<o.35; however, this range is adequate for the present purpose.

Similarly, the dow-mvashassociated with the wing lift due to sinusoidal gusts gives rise to a tail lift which, within this
nppro.ximation,is

[(~~,).=–~!=,% # ~ –0.16+1.16e
-fk(~~;) ,-o.ofk:wr1 , (68)

(The additionrd lag represents the time required to travel
the 0,6 root semichords from the 45-permnt-chord point of
the root, which is the reference point for the gusts, to the
76-percent-chord point of the wing root, which is assumed
Lobe the point governing the lift at the wing root, inasmuch
as it is the centroid of the influence function for the chordwise
pressure distribution.)

The other aerodynamic forces are those due to the motions
of the airplane, those due to the tail deformations, and those
directly due to the gusts. On the baais of the assumptions
made in the preceding section, these forces are

(70)

and % and z, are the angle of attack and vertical displacement
of the airplane at the wing root.

The inertia load on the tail is

Z,f=—m,(&+AE-z/&)

or

(71)
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Here the center of gravity of the tail has been assumed to
coincide with its aerodynamic center; in order to remove this
a~ption it is necessary only to add (or subtract) the
distanm between the two to x; in equation (71).

The normal forcw on the tail can then be summarized as
follows:

~,=q[F1(k)Z,+Fz(k) a,+ F,(k) Aa+F,(k)Az tF@)w,] (72)

where

~k &
h [ 1}-o.16+1.16e-’(~49 ++IF

Q
PC
55

F,(k)=c!.=,: s,
{

H,(k)–(l+?e,ik) ~
[

–0.16+

F,(k)= C.=,f S%)

1.16e-“(’%+)1 .*(*’’:)}

and
–k.$

w~=e

The pitching moments corresponding to these normnl
forces can be obtained in the manner employed for the wing.
However, inasmuch as the tail chord is usually small com-
pared with the fuselage length, the travel of the center of
pressure of the tail is small compared with the length z/.
Hence, the center of pressurewillbe msumeclto remain at the
aerodynamic center of the tail, and the pitching moments
are then —z; times the corresponding forces, so that

M,= –~/[Fl(k)Z,+Ft(k) a,+ I’a(k)Aa+FA(k)AZ+ Fs(k)Wd
(73)

WINGANDTAILD~ORMATIONS

The wing deformations may be calculated either from
structural influence coefficients or from the bending and
torsion stitlnesses of the wing used in conjunction with
simple beam theory. The latter approach will be followed
here, based on the method of reference 12. .

The bending and torsion moments on the wing structure
may be obtained by integrating the applied loads. If numer-
ical methods are employed to perform these integrations tlm
rexmltsmay be written w follows:

@&m l–skA&l-

{}[

M.
.

MT [0] cos A:~
-

Siarly, the deformations are

where tb6- integrating matrices (see ref. 12) perform the following operations: ,
. .

{}

1

mT

,, ’’.” 7,.‘
:)

{}

1
(74)

~T

(75)

.,.
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These integrating matrices may be based On the trapezoidal
rule, Simpson’s rule, or any other numerical method; the
intervals chosen for f (OS ~S 1) need not be of constant
width unless a speciiic rule demands a uniform spacing.

The structural deformations of the wing may then be
written in terms of the applied loQds as

{:=:}=’[%%1{:}+’[+1”}‘7”
where the submatrices [@)], [@], [~], [Q], [@], and [0]
designate, respectively, the four quadrants and two halves
of the matrices, obtained by postmultiplying the square
mtitrki of equation (75) by the square and the rectangdm
matrk of equation (66), respectively.

For the purpose of the present analysis, which is concerned
primarily with the wing stresses, the tail deformations are
treated by including only the vertical displacement and
angle-of-attack change of the tail as a whole due to the tail
load. These quantities may be obtained from a static test
which consists in applying a concentrated normal load at
the aerodynamic center of the tail and measuring these
deformations. They may also be obtained from a vibration
test in which the deflection curve of the rear part of the
fuselage in the lowest vertical-bending mode is measured;
in this cnse the desired spring constants can be deduced from
the frequency relation of a simple mass oscillator in terms
of tho measured frequency and of the mass of the empennage
(including the part of the fuselage which maybe considered
to move with the empennage). In the absence of such tests
these constants may be calculated in an analogous manner.

The tail deformations may then be written as

Aci= —KILt
AZ=K2L$ )

(77]

80 that, dSO,
_l ;a

‘== K,
(78)

Inasmuch as these deformations arenot independent of each
other, only one need be retained in the analysis. Therefore,
if Az is eliminated by means of equation (78), Aa can then
be obtained in a form similar to that used for the wing
deformations in equation (76):

{ [
Aa=–gK1 F1(k)zr+F2(k)a,+ F3(k)–

‘2 ~,(k) Aa
z 1}

– @KIF@)w, (79)

EQUATIONS OF MOTION

Equations (76) and (79) are equations of motion inasmuch-
ns they describe balances of aerodynamic, structi, and
inertia forces. In fact, if the airplane fuselage were im’-

mobile (a,= z,= O), they would be sticient to calculate all
unknown quantities. However, if the fuselage is free to
move, two additional equations are required to obtain the
two additional unlmown quantities a, and z,. These addi-
tional equations are those expressingthe dynamic equilibrium
of the forces on the fuselage, namely,

Lm+L,–m~ (2,–M ~)=0
1 (80)

M.–Z,Lt– (r$+ (AZ)’) mjir+~ mFr=O J

where the wing lift and pitching moment can be expressed
terms of the lift and moment distributions 1 and m as

LW=H’’JO’I{;T}
1 () 1{ }kfa= –2 ~ ‘ tan A [II], 2: [1] 1

mT

or

in

(81)

(82)

where l@]) [@]~ [@], ~d [@] are the rows obtained by post-
multiplying the rows of equation (81) by the square and
rectangular matrices of equation (66). In equation (80) the
fuselage lift and moment have been neglected; they can
easily be expressed in terms of a, and z, and included, if
dwired.

The equations for the tail deformation Aa and those for
the overill normal force and pitching moment can be com-
bined with equation (76) as follows: For the sake of d&nite-
ness it will be assumed that n stations on the wing are
considered, including the one at the root, so that there are
2n+ 1 unknown quantities, and that in the column matrices
defining applied loads, defo~ations, and so on, the values
at the root of the wing are wmtten at the top:

{ }“z
a E

Aa

The fit and (n+ ] )th equations of the system defined by
equation (76) e~ress only the trivial fact that the structural
deformation at the wing root is zero. They’ are replaced by
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equations (82) and (79), which are adjoined to the system, to yield the combined equation of motion

o
–1 1

–101 o

–1001

. . . . . ..:
------ --------- ;-- ------ ------

~–l 1

0 ~—lol”

:–1001
:- +.. -

-.--s- ------- -------- ------- --

0; 0

z

--

a

--

ALY

lf the square matrix on the right side of this equation is
designated by [A], the rec@ng& matr& by [B~ and the
quasi-unit matrix on the left side of the equation by [1’], the
equation can also be written as

[[’’’-~[~Jl{;a}=Q[~l{:}
(83b)

The matrices [@] to [@] are the same as the matrices
[(I)I tO [01 of equation (76), except that the &t rows of
the latter, which ‘&e all zero, are r~placed as follows:

M&m’ Repk.cmwt Quantity ad&d to the kadlng element

@ Fhat half of [@j W++M

O25

@ Seeond half of @ F,(k)–= w

O53

0 First half of [@] —ztF,(k).—~ k~

0%

@ Second half of [c@] –z~F2(k)+ w[~fl+(@l ~

(7
z

$$

0 I@] . 0
@ [(IIJ o

Also, the elements of the last rows and columns of the mat-
ricea”[A] and [l?l are zero, except for the following:

4,,.+1= F,(k) –~,(k)

4+l,2.+l-
[

——z, F3(k) —&4(k)
1

442.+,,,= –I@,(k)

i’lz”+],x+l=-lrl~ a(~)

—

z

--

a

--

Au
—

+q

0:5’ :

.---, -.

0:f3’ j

.--. -:--

0;

w

--

w, (83a)

.

A2.+1,2.+1
[

= –K, ~,(k) –~4(H

1

R, n+l=~dk)

Bn+,, “+1= —@@

SOLUTION OF THE EQUATIONS OF MOTION

For the purpose of calculating the desired transfer fune-
tions, equation (83b) may be solved directly for a given
value of g as a set of linear algebraic equations with coeffi-
cients given by the matrix [1’] —q[A] and with “knowns”

{ }(given by the column matrix q[l?] ~, where [A], [1~],and

{}
w

)
are functions of k . The result isa column matrix of

w~
the uhown amplitudes of the motions of the airplane. If
this column is calculated for several values of k in the rango
of interest, these amplitudes, considered as functions of k,
are transfer functions from the gust to the motions.

This column matrix can be su~~:ted into equation (66)

i}
and theresultingcolumn matrix G substituted into equn-

my
tion (74), to yield a column mat~x ~f bending and twisting
moments which again, considered as a function of k, repre-
sents transfer functions from the gust to these moments.
A set of transfer functions for the vertical shear could bo
calculated similarly from the relation

{V}=[:u] ~[0]]{ ;,}

The stress at any point of the structure scan be assumed
to be given by a linear superposition of the bending moment,
twisting moment, and vertical shear at the given station, if
elementary beam theoty is used. If elementary beam theory
cannot be used because of the interaction of bending and
tcmion stressesor because of shear lag, the stress at a given
point can be expressed as a linear superposition of moments
and shears at other stations as well as the given sta~ion. In
either case, the transfer function for the given stress is then
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produced by the same linear superposition of the transfer
functions for the corresponding moments and shears.

It maybe noted that, at zero frequency, solution of equa-
tion (83b) yields the static aeroelastic deformations and thus
permits the calculation of the changes in the lift distribution
und the shift of the aerodynamic center that result from
static neroelastic action. Also, inasmuch as this equation
completely describes the dynamic be~avior of the airplane,
the speeds at which aeroelastic instability phenomena occur
can be calculated from it, although such calculations are
beyond the scope oi this report. .Sutlice it to point out that
for such n calculation the degrees of freedom of the body
must bo eliminated first, as a result of the way in which
tlm problem has been set up. This elimination can be
cdlectcd redly by considering the first and (n+ l)th rows
of [A], but with All, Al, m~l,A%+l,1, and An+~S+Ireplaced by
O, If these rows are premultiplied by

[

4.+. “
– f;+,,, A.+,,,+, 1

and used as the first and (n-ll)th rows of a matrix which
is otherwise % unit matrix, and if this resulting matrix is
referred to rM[1”], then equation (83b) can be written for
this homogeneous case as

{l-
Z

[[1’] [l’’] –q[A] [1”]] a = {o}
Aa

Tho products [1’] [1”] and [A] [1”] will now have two null

rows and columns each, which correspond to G and ar. If
these rows and columns are deleted and % and ~ are deleted

{}

z

{)

2’

in a ~yieltig a COIUmU ~ , the remtig mat-

Aa ACY
rices are nonsingular, so that they can be inverted and the
preceding equation can be written as

{}

f

[[m–!l[w)ll : ={0} (s4)
Aa

whore [#?31is the identity matrix, nnd

[~(kh[mrl[m] ,.
The horizontal braces designate the fact that the null rows
and columns have been deleted.

Equation (84) is in the canonical form for the calculation
of eigcmvalues. If k is set equal ta zero and the eigenvalues
of [D(O)] are calculated by iteration, expansion of the de-
tcrminant, or any other suitable method, the lowest real
and positive one represents the value of the dynamic prw-
sure at divergence. For swept wings the value lowest in
obsolute magnitude is usually negative and is therefore of
no practical significance, although it is often used as an
index of the aeroelastic behatior of the airplane.

This calculation cm be repeated for various positive values

of k, the first few eigenvalu~ ‘being obtained for each. The
results, which will generally be complm, can be plotted
against k. When any of the. eigenvahm.sbecomes purely
real, it represents a dynamic pressure at flutter, and the
corresponding value of k repremnts the reduced frequency
at flutter. (This statement is true only if the structural
damping is zero; such damping effects can easily be included,
but the details of the process are beyond the scope of this
report.)

DYNAMICSOF THE LARGEFLEXtBLEAIRPLANE

For the large flexible airplane the fundamental proposition
of power spectral analysis, that the output power spectmun
of a system is the product of the absolute square of the
transfer function and the input power spectrum, is no longer
valid if the input is considered to be the gust intensity at a
point. Nor can the output power spectrum be expressed
directly in terms of an eilective input spectrum, as in the
case of the rigid airplane, where this simpliikation resulted
from the assumption that the indicial-response function was
expressible as the product of a function of time alone and a
function of distance along the span alone.

In the first section of this part of the report the statistical
problems involved in an analysis of the response of a large
flexible airplane are considered. The nature of the general-
ized transfer functions required for this purpose is deseribed,
end the means whereby they are combined with the input
spectrum are indicated.

The second section is concerned with an extension of the
method outlined in the preceding part to the case of the large
airplane. Although fundamentally the dynamic aspects
of the problem are unchanged, and although the longitudinal
and lateral degrees of freedom oan still be separated, a direct
application of the approachu outlined in the preceding parts
of the report to the large airplane requirw consideration of
the entire wing, rather than only one half of the wing.
Little additiomd computing time is then required to treat
the lateral and longitudinal degrew of freedom simul-
taneously, and the necessity-of chmbining the results of two
separate analyses is obviated. However, attention can
still be c.ordi.nedto one half of the wing by using the technique
outlined in the discussion following equation (55) and in the
section headed “Combination of the Results Obtained From
&alyses of the kmgitudinal and Lateral Degrees of l?ree-
dom.” Basically this technique consists in splitting the
influence functions of concern into symmetric and anti-
sym.metricparts and using one part for an analysis involving
the longitudinal degree-s, and the other in an analysis in-
volving the lateral degrees. If this approach is adopted,
separate analysis of longitudinal and lateral degrees of
freedom is still preferable.

EXTENSION OF THE STATISTICAL APPROACH

The power spectrum and, hence, the mean-square values
of the responses such ‘as the stress at a given point on the
wing of a large flexible airplane due to flight through turbu-
lent air can be calculated in several ways. Perhaps the most
direct of these consists in using the basic approach outlined
in the &at part of this paper and starting with an expression
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for the instantaneous value of the stressin terms of a suitable
indiciol-responso itiuence function, namely,

SS

m b/2
a(t) = A:(tl,y)w@(t–t,), y)dydtl (85)

—m –bf2

The function h~(t,y) is, m before, an indicis.1-response
influence function or Green’s function for the partial differen-
tial equation. It relates the stress as a function of space
and time coordhmtes to the applied loads, which are also
functions of space and time coordinates. The essential

difference between the problem considered in this socLion
and those treated @ the fit two parts of the report is tlmt
this function can no longer be expressed as a product of fi
function oft alone and y alone. In some cases—in a modal
approach, for instanceit may be expressible as a sum of
several such functions, and then the approach used previously
for the bending moment of a large rigid airplane free to move
vertically may be adopted, as has been done in reference 13,
However, in this section the case ~ considered in which
even this simpliikation cannot be made.

Tlie correlation function for a can be calculated directly from equation (85), and for the case of axkynunetric turbulence
it is ‘- ‘“.

+.(7)=~m ~“ ~~h ~~~ hHtl,yJhXt~,y2) h (@ ‘(T+t,–t,)’+(y2 -gJ’) d~,d~, dt, dt, (86)-. —.

Hence, the power spectrum of u can be obtained by calculating the Fourier transform of this function and is

bj2 blZ
q%(u)=

SS
ZT:*(U,@H:(co,@ @J~, Iyr–y,l) dyldyz (s7)

-b/a 4/2

where ~JGI,V)is the two-dimensional spectrum considered previously, fl(~,y) is the Fourier transform of h~(t,y) with respect
to time, and the asterisk designates a complex conjugate, as before. Thus, the function &[u,y) is a transfer function from
sinusoidal vertical ~wts (of width G?y)impinging on the -wingat a given station y on the wing to the stress u, or a Green’s func-
tion for the ordinary dtierentisl equation (with the quantity a as a parameter) that relates the stress amplitude as a function
of the space coordinate y to the amplitude of the applied sinusoidal gusts.

The term ~“(u,y~ ~(co,y~ in equation (87) is complex; however, the imaginq part can be ignored because it contribute
nothing to the integral as a result of the fact that & depends only on ly~—yll.

In a manner analogous to the oneaemployed in the first part of this report, the double integral in equation (87) can bo
evaluated by introducing the function ~(u,q) which takes the place of the function I’(q) used previously and is defined by an
autoconvolution of @(ujq):

where R{ } designates the red part. Hence,

KM)

Another approach consists in using the double Fourier transform @m(A)of the ~e~c ~put ~mel~tion de~ad in
the first part of this report. In terms of this function the correlation function #c(r) can be written as

where the function

represents the Fourier transform (with respect to y) of the function @(u,y), that is,

&(X,,AJ=J_W2*n #MH~@IU,y) dg (89)
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Hence,

With the approach outlined in the next section, the function @(ujy) can be calculated either directly or indirectly, by
first calculating the trrmsferfunction from the gust to the lift distribution and then the transfer function from the lift distri-
bution to the stress. For the indirect method, ,

sbm
H%((qy)= H:(@,y)Hy(@) G(q,y)dq

- bll

whero the function ~(u) ~(q,y) is the influence function for the 10C.EJlift or the Green’s function for the aerodynamic
problcm involving sinusoidal gusts considered in the tit part of this report; the symbols q and y in @(q,y) are inter-
changed, however, so that the function now defines the contribution of a gust at station y to the lift at station q.
The trrmsfcr function H~(a,V) relates the (sinusoidal) stress at the given point to a unit concentrated (sinusoidal) normal
force acting at station V.

‘With this indirect method, the power spectrum for the stress at a given point can be calculated by starting with the
power spectrum for the lift distribution calculated in the first part of the report. For this approach u(t) may be
written as

.-H bf!l
u(t)=” h:(tl,y) 1(t–t,,y)dydt,

-m - W2

so that

nnd

where

*Z(7,Y1,Y2)=Wyl)l(T+t,y2)

The I?ourior transform of this correlation function is, then,

(Se~ the section headed “Generalized Aerodynamic Influence Functions in Unsteady Flow.”) Hence,

If WU.(U)is given by equation (36), the double integral em be expregsed in terms of single integrsls as follows:

J
f3(@)= bn H:(a@~@ dy

-b12

Q’(LLI)=
J

bn H:(co,v)P..*(~,y)~Q/)dy
-W9

Q“(u,q) =2
J

‘n)-’ ~{ H:(ujy) ]R{H:(co,y+q) } +I{H&,y) }I{@(a,y+q) }]y(y)~(y+q)dy
-0/2 :... . .

(91)

(92)

(93)

(94)

.,
. . .
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as before, R{} designates the real part, and I{ } designates the
imaginary part.

Equations (88), (9o), and. (93) thus represent three
methods of obtaining the power spectrum of the given stress.
One requires a transferfunction from the local gust intensities
directly to the stress, am autoccnmolution fof this transfer
function, and the spectrum of turbulence defined by equation
(16); the second requires a twod.imensional spectrum of the
turbulence defied by equations (17a) and (17b) and a
Fourier transfon.n of the aforementioned transfer function
with respect to y; the third utilim an autoconvolution of
the transfer functions from local concentrated loads to the
stress and the spectrum for local lifts due to vertical guste
calculated in the first part of the report. The choice of
approach depends to some extent on the information avail-
able, but is largely a matter of individual preference.

The analysis in this section has been based on the premise
that both halv~ of the wing would be treated simultaneously.
Attention can be confined to one wing by using only the
symmetric parts of the influenca functions in an analysis
involving the longitudinal degrees of freedom, and only the
antisymmetric parts in an analysis involving the lateral
degrees of freedom. The symmetric part of an influence
function for a unit concentrated load or gust acting at sta-
tion y is the response function for two loads or gusts of% unit
intensity acting at stations y and —y, respectively. Simi-
larly, the antisymmetic part is the response for a load or
gust of ~ unit intensity acting at station y and an equal and
opposite load or gust acting at station —y. If this approach
is chosen, some of the integral expressions given in this
section assume slightly simpler forms. For instance, equa-
tion (89) can then be written for the symmetric part as

rindfor the antisymmetric part as

CALCULATION OF THE REQUIRED TRANSFEH FUNCTIONS

Depending on which of the methods outlined in the pre-
ceding section is used, one of two types of transfer functions
is required-either the one from local guste to the stress of
interest, or the one from the local lift to that stress. Both
of these functions difbr in several respects from those con-
sidered in the preceding part of this report.

For either type of transfer function the structural de-
formations of the wing under concentrated loads as well as
under distributed loads will be required, so that the numeri-
cal-integration schemes used in the preceding part have to be
modified to some extent. Also, it may now be preferable to
consider the entire wing (rather than the one semispan con-
sidered in the case of the small flexible airplane), so that the
various transfer functions are asymmetric. With the degrees
of freedom Wnsidered in the analysis thus doubled, it becomes

preferable to include one additional degree of freedom, roll,
rather than to perform two separate analyses for symmetric
and antisymunetricmotions with, respectively, one and two
less degre- of freedom, and then to combine the results.
However, if the alternative approach of splitting up tlm
influence functions into symmetric and antispetric parts
for use in two separate analyses is adopted, only one semkpan
need be considered, and the results presented in this section
can then be sirnpliliedto a large extent.

Before discussing the modifications required to axtond the
dynamic analysis outlined in the preceding part of the report
to the large airplane, it might be pointed out that chordwiso
deformations (defomuations parallel to the chord) will again
be ignored. Again, they can readily be included by a
straightforward extension of the approach used here if it is
felt that they may be significant in any given case, If they
are included, however, yawing and possibly also sidealipping
motions can probably no longer be ignored, because they
may give rise to large forces in the chordwise direction. If
the entire wing is treated, these two additional degrees of
freedom ean readily be included, and all longitudinal and
lateral degrees of freedom are then treated simultaneously;
if two separate analyses are performed for the longitudinal
and lateral degrees of freedom, the symmetric and anti-
symmetric parts of the influence functions behg used and
only one semispan being treated, these additional degrees of
freedom enter only into the lateral analysis.

The structural deformation due to local (concentrated)
loads can be obtained in several ways. If measured infhmnco
coefficients are used, they pertain precisely to such loads and,
in fact, must be modified before they can be used for dis-
tributed loads (see ref. 12) so that it is necessary only to um
the unmodified coefficients.

If the deformations are to be calculated in a manrmr
simiIar to that employed in the preceding part, the inte-
grating matrices must be replaced as follows:

where

In’=l (!I>P)

1,;=; (!?=P)

— IN’=o (!Z<P)

and

where

IIn’=y,-y,

IIH’=O

(!Z2 P)

(!2< P)
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The factor of ~ for I&’ constitutes an approximation which
implies fairing through a discontinuity. If this approxi-
mation is to be avoided, the deflections due to unit concen-
trated loads (the structural influence coefficients) can be
calculated directly from simple beam theory, in --which
cam the limits of integration take care of the discontinu-
ities, Thus, for instance, for an unswept wing, the normal
deflection and twist at VPdue to a unit concentrated load
and torque, respectively, at yc are

(Y, 5 Y*)

SS

Vq v’ —
Zm=

00 sj$$-dYdY’+(YD-YQ) :~dy (%> Y,)

oh< Y.)

The concentrated loads under consideration arise as
follows: For the transfer functions relating local lifts to
the desired stress, the local lifts may be considered to be
concentrated loads of unit magnitude, associated with
concentrated torques of magnitude elc. Equation (83b)
can then be written as (see also eq. (76))

[[’’]-Q[A]l[~21=[R’][ifld(95)

where lw] is a diagonal matrix of the values of w defied by
equation (63), and where the matrix [1?’] represents either
tho four influence-coefficient matrices for z and a due to
concentrated loads and torques, or the square matrix of
equation (75) with modified integrating matricw, as dis-
cussed in the preceding paragraphs.

It may be noted that equation (95) now represents not
one set of simultaneous equations but several, all having
the same coefficients but diflerent sets of knowns (SZdefined
by the columns of the matrix on the right side) and,

(hence, dithwent sets of unknowns the columns of the.
\

[1zmatrix a . This situation is due to the fact that the
Aa

functions under consideration are, in effect, the responses of
the airplane as a whole to sinusoidally varying concentmted
loads and are diflerent for each location of the applied load.

Once this equation has been modified to take into account
the overalI body motions and tail deflections (as explained
in the preceding part) as well as the rolling motions (as
explained in the following paragraphs), it can be solved to

[1
z

yield the unknown values of a . From these values the
&l

bending and twisting moments, as well as the vertical shears,
caribe calculated and added to those due to the concentiatad

loads. When combined linearly as required for the desired
stress, these moments and shears yield the d&red transfer
functions H~(Q,y).

If the transfer function directly from the local gusts to
the desired stress is to be determined, the response of the
airplane to the lift distribution induced by a sinusoidal gust
of width dy acting at station y must be calculated. This

~lif: ~tibution is the Green’s function considered previously.
If It ISrepresented by the relation H?(a) G(y,n), with t7(y,q)
defined by the approximation given in equation (34), the
concentrated loads arise from the delta function in that ex-
pression. The right side of equation (95) becomes, in that case,

@KHY (co)[R’]
[h%%%hl

whwe [1?] represents the square matrix of equation (76),
and [R’] the one discussed in connection with equation (95).
Again, several sets of simultaneous equations are implied.
Their solution (after modification for overall motions and
tail deflections) yields values of z and a from which the
transfer functions H%(a,y) can be calculated.

The extension of the method of the preceding part to the
calculation of the deformations on both wings is straight-
forward. I@entially, distributed lifts and torques now have
to be calculated for both wings and integrated with matrices
which can be assembled from those used for one wing alone.
No new problems arise in this process, so that it need not
be discussed further.

The inclusion of rolling motion, however, is not so straigh&
forward. One method consists in replacing all values of z
in equation (83a) or its equivalent by z+ 9y and then
reducing the columns involving this quantity by the folloviing
relation (which aasumes that the new unknown quantity,
the roll angle 0, is listed at the end of the column):

Z+ey
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An additional equation must then be joined to the set,
namely, the equation of equilibrium in roll

J:Bt(y) ydy-IzO–MD,O=O (96)

where I= is the inertia in roll of the fuselage and empennage
alone inasmuch as the inertia effecti of the wing are included
in l(y), and MDI is the coei%cient of darnping in roll for the
empennage. For most cases both of these contributions are
negligible. If they are ignored, equation (96) can be writth
in matrix notation as \

where [IIJ is now a matrix which serves to perform the inte-
gration required in equation (96). This condition can then
be adjoined to the other equations of the set in the same
manner as equations (82) were adjoined to the set in the
preceding part.

The result, again, is a set of simultaneous equations for z,
a, A% and e from the solution of which the desired transfer
functions can be obtained as outbed in the preceding para-
graphs. Also, as before, once the unlmowns 2,, a,, and e are
eliminated from the set, the divergence and flutter speeds
can be calculated by conventional matrix operations; these
speeds will then pertain to an airplane free to move verti-
cally as well as in pitch and roll and, hence, will include
divergence and flutter speeds in antisymmetic as well as
symmetric modes.

DISCUSSION
SOME IMPLICATIONS OF THE ASSUMPTIONS CONCERNING THB NATURE

OF ATMOSPHERIC TURBULENCE

The turbulenm -wasassumed to be homogeneous in order
to make the problem stationary in the statistical sense and
thus permit the use of the mathematical techniques developed
for such problems. In a practical sense, turbulence can be
homogeneous only in a limited body of air. The ~P-
tion thus implies that the dimension of this body of air
along the flight path is large mmpared with the distance
travemed in the reaction time of the airplane, which in the
case of load studies is of the order of the time to damp to
one-half amplitude, but in the case of motion studiw-may
be much larger. Obviously, the greater the -body of air,
the greater the reliabili@ with which the loads and motions
can be predicted (in a statistical sense) for one run through it.
h general, turbulence at very low altitudes, which maybe
influenced significantly by the configuration of the ground,
and turbulence in thundemtmrns may not be sufficiently
homogeneous for the purpose of this type of analysis, but
other types of turbulence are likely to lie substantially
homogeneous over sutliciently large distances.

Isotropy was assumed in order to permit the required two-
dimensional correlation functions to be expressed simply in
terms of the one-dimensional correlation functions. For
sticiently short wave lengths all turbulence is isotropic, but
for long wave lengths it can be isotiopic only if it is homo-
geneous (both in the plane of the fight path and perpendicu-
lar to it). The condition of misymmetry, which is sufficient

for most of the resultspresented herein, is lessrestrictive than
isotropy inwnmch as it does not specify the variation of tho
characteristics of the turbulence in the vertical direction.

In practical problems, if the turbulence may be assumed to
be homogeneous, the conditions of axispnmetry and iso-
tropy are likely to be satidied to a suilicient extent to permit
the use of the approach presented herein for all but very
long wave lengths. The wave length at which it ceases to

be valid depends on the size of the body of air under con-

sideration, being larger for a large body.
Taylor’s hypotkis (to the effect that rLspace displace-

ment AXalong the flight path may be identified with a time

displacement r=Az/U in the gust correlation functions) im-
plies that the variation “ingust intensity that prevails along
the flight path at any instant will remain substantially the
same until the airplane has traversed the given body of air.
The required correlation functions for atmospheric turbulence
are thus in the nature of space correlation functions (rather
than time correlation functions) and have been con~idered
as such. The statistical characteristics of the turbulence
are then independent of the speed at which it is traversed.

Clearly, whether or not this hypothesis is valid depends on

the flying speed of the airplane. On the basis of present
knowledge no definite lower limiting speed can be quoted.
However, indications are that the hypothesis is valid for
flying speeds greater than about 100 or 200 feet per second.

The effect of finite flying speed on the gost correlation func-
tion can be expected to be most pronounced for large dis-
tances, where the correlation is weak, so that the effect on
the various spectra is likely to be small and to occur at the

longest wave lengths, where, as previously mentioned, the
spectrum is somewhat uncertain for other reasons as W141;
this effect is thus more likely to be signiikant for large than
for small airplanes.

The particular correlation function used herein for the cal-
culations of the “averaged” correlation functions and spectra

has certain theoretical shortcomings-primarily that tho

associated spectrum does not decrease rapidly enough for

vw short wave lengths. However, it does appear to be

adequate to represent the available information concerning

the spectra Gf atmosph&ic turbulence (see ref. 17, for in-

stance) because the behavior at very short wave lengths is

relatively unimportant, inasmuch a9 airplanes cmmot re-

spond to them, and the behavior at very long wave lengths

is usually in doubt by reason of the nonhomogeneity of acturd

turbulence. In the intermediate ~ge of wave lengths, this -

correlation function appears to be qqite satisfactory.

The parameter L* (the integial sc%le~f turbulence) used
herein is, for practical purposes, a largely fictitious quantity,
inasmuch as it is proportional to the values of’ the gust

spectrum for i.ndnite wave lengths, which, in view of the
uncertainties in the values of the spectra at large wave
lengths, have little physical significance. Therefore, at
present, i.nwdlicientinformation is available to give a value
for L* to be used in comection with the numerical results
calculated herein, although a value of 1,000 to 2,000 feet
appeam to be appropriate. As more information concern-
ing the spectrum of atmospheric turbulence becomes avail-



lHE RHSPONSD OF AN AIRPLANE TO RANDOMATMOSPHERIC DISTURBANCES 177

nble, more deiinite values can be deduced by fitting an
analytical exprew.ion of the type used here to measured
results in the range of frequencies of primary interest, and
then using this expression as a means of obtaining a value
of L* by extrapolation of the measured results to intinite
wave lengths (zero frequenq).

CONSIDERATIONS PERTINENT TO THE APPLICAmON OF STATIONARY.
RANDOM-PROCESS TECHNIQUES TO GUST-LOAD PROBLEMS

The purpose”of this section is to point out how, in principle,
the results of analyses of the type outlined herein may be
used in overall load analysis and, hence, in the design of an
airplane.

Consideration is confined in this paper primarily to the
power spectra of the motions and stresses of interest.’ As
pointed out in references 1, 2, 3, and 11, for instance, a great
deal of statistical information of direct interest can be
obtained from the power spectrum. For instance, if the
random process of ccmcern (say, the given stress as a func-
tion of time) has a Gaussian probability distribution, the
expected number of peaks at or beyond a given level in a
given period of time can be calculated very simply from the
integrrdof the spectrum and its second and fourth momenti.

The results obtained in this manner pertain to continued
flight in a given body of turbulent air. They have to be
generalized by determiningg the likelihood of flying through
turbulence of the given characteristics. (See ref. 18.) The
probability of ~xceeding a given stress level during the ex-
pected life of the airplane while flying through atmospheric
turbulence can thus be calculated in straightforward fashion.
To this probability must then be added the probabili~ of
exceeding this level in maneuvers, landings, and, possibly,
also in turbulence due to thunderstorms, because in view of
the possibly nonhomogeneous charircter of turbulence in
thunderstorms and the possibly nonlinear nature of the
aerodynrunic forces incurred while flying through them, the
techniques used herein may not be applicable to flight
through thunderatorrns, and a separate analysis may have
to be performed.

Although the available information concerning atmos-
pheric turbulence is inadequate to permit of any definite
conclusion, the results obtainable with the approach outlined
herein may turn out to be most signitlcant for the prediction
of the low- and medium-amplitude stress cycles which are
important to fatigue studies; their validity for or contribu-
tion to the prediction of very severe loads remains to be seen.

CONCLUDINGREMARKS

The statistical approach to the problem of calculating the
dynamic responses and the stresses of an airplane subjected
to continuous random atmospheric turbulence has been
intended in several respects; basically, only the assumptions
of linearity, that is, of small motions and deformations, as
well as homogeneity and axisymmetry of the turbulence are
retained.

The first problem considered was the effect of spamvise
variations of the instantaneous turbulent velocities on the
lift and moments due to turbulence. The mean-square lift
has been show-nto be reduced considerably if the span of the

airplane is relatively large cempared with the integral scale
of turbulence. The shape of the spec~ of this lift is
@ected relatively little by spamvise variations of gust
intensity, except at very high frequencies, if the decrease in
the effective mean-square intensity is taken into acceunt.
The effect of sweep on the mean-square lift and its spectrum
has been shown to be small for wings with a given distance
from root to tip.

If the variation of the instantaneoW velocities is taken
into account, the rolling moment to which the airplane is
subjected can be calculated. The mean-square rolling
moment has been shown to be proportional to the ratio of
the wing span to the integral scale of turbulence for small
values of that ratio. Sirnkrly, expr=ons for the mean-
square values and the power spectra of the 10MI lift, the
bending moments, and the pitching moment have been given.
For some of these forces the required aerodynamic informa-
tion cannot be calculated by existing methods. Therefore,
certain approximations, based on experience with steady
aerodynamic forces and available knowledge concerning
unsteady forces, had to be made for the aerodynamic influ-
ence functions in unsteady flow.

The next problem considered was the dynamic response of
a rigid airplane to random turbulence. This problem had
previously been treated for the case of an airplane free to
move only in the vertical direction and small enough so that
variation of the turbulent velocities along the span ccmld be
neglected. In the present report the response of an airplane
in three longitudinal degrees of freedom was considered;
calculations were made which suggest that the inclusion of
deviations from the mean horizontal motion is superfluous
in gust-load calculations. For the remaining two longi-
tudinal degrees of freedom, the mean-square normal and
angular acceleration have been shown to be functions of
only two parameters other than the mass ratio and scale
parameter of the single-degree-of-freedom case, namely,
dimensionless forms of the short-period frequency and of
the time to damp to one-half amplitude. An indication is
given of the manner in which the results obtained in cennec-
tiori with the first problem can be used to extend this dy-
namic analysis to the case in which variations of the turbulent
velocity along therspan have to be taken into account.

The last problem treated was the dynamic response of a
flexible airplane, including vertical motion, pitch, and, when
necessary (as when spanwise variations in gust intensity are
taken into account), roll. Horizontal and lateral @awing
and sideslipping) motions were disregarded because they do
not generally affect the wing stresses due to vertical gusts.
A method whichrepresents an extension to the dynamic case
of a numerical-integration approach to the static aeroelastic
problem has been outlined for the analysis of the problem at
hand. The modithtions required in the basic statistictd
approach and in this method of dynamic analysis in order
to treat the case in which spanwise variations of the gust
intensity are importmt have been discussed.

Although most of this analysis has been coniined to the
vertical component of turbulence, it has been shown that the
simultaneous action of longitudinal, vertical, and lateral
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gusts on the wing stresses (with due allowance for the fact
that vertical gusts tiect both the longitudinal and the lateral
motions of the airplane) can be taken into qccount by simply
adding the power spectra of the various contributions, pro-
vided the turbulence is isotropic; the cross correlations or
spectra have been show-nto vanish either by the symmetry
or antis~etry of the influence functions involved or as a
result of the statistical independence of mutually perpendicu-
lar velocity components.

The approach presented herein thus furnishes a founda-
tion for the prediction of the statistical properties of tho
stress experience of a given airplane once the appropriate
statistical characteristics of the atmosphere have been de-
termined.

kGLEY AERONAUTICAL~ORA~ORY,
~ATIONU ADVISORY(20w~DB FORADRONAUT1CS,

LANGLEY FIELD, VA., Nommbw 6, 1966.
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